Methods and apparatus for stationary object detection

Data processing: vehicles – navigation – and relative location – Relative location – Collision avoidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S096000, C701S035000, C340S903000, C340S435000, C340S436000, C348S142000

Reexamination Certificate

active

06438491

ABSTRACT:

TECHNICAL FIELD
This invention is related to systems and methods for stationary object detection, including driver situation awareness, vehicle collision warning, collision avoidance and/or adaptive cruise control systems as examples. More particularly, this invention relates to improvements in stationary object detection, and accurately determining the likelihood that a objects detected using an object sensing system are not normally present at a sensed location.
BACKGROUND OF THE ART
Object detection systems can be useful in a variety of environments, including for use in land-based mobile machines and vehicles where there is a threat of collision with the objects. Such land-based mobile machines or vehicles may include subterranean or open-pit mining machines, on-road or off-road vehicles, robotic machines or the like. In the varying environments in which such machines are used, it should be evident that various obstacles and objects are within the possible path of the machine, and wish to be detected and often avoided. For example, vehicles may encounter conditions where there is no visibility of objects within the possible path of the vehicle. Collision warning systems are currently being developed to provide a warning to the commercial and/or passenger vehicle driver whenever an onboard sensor detects that an object presents a potential for a collision. For safety concerns, these systems must use a low threshold in determining whether the identified target object is a potential collision hazard in order to prevent the system from missing a bona fide hazard target. This results in the collision warning system sometimes generating a collision alert in response to non-hazard targets and/or clutter such as “road furniture”. Typical non-hazard targets include road signs, bridges, fences, guard rails and road-side burms, etc. These “false” alerts, also known as “nuisance alerts”, are an annoyance and can happen so often that the driver may delay reacting or ignore the warning and not react to a bona fide warning. Poor discrimination of such non-hazards from true hazards limits the effectiveness and reliability of such collision warning systems.
There are currently several types of vehicle-based collision warning and adaptive cruise control products for use in commercial and passenger vehicles. The first system is known as Adaptive Cruise Control (ACC). ACC is an enhancement to conventional cruise control which has the ability to detect objects ahead of the moving vehicle when cruise control is engaged to improve the “comfort and convenience” of the system. It is not employed as a safety system as the driver must still pay attention and respond to potential hazards, and is often marketed as simply a “more convenient” form of cruise control, even though some evidence exists that its use offers safety benefits, as well, compared with conventional cruise control. When the ACC host vehicle is cruising at its cruise-control set-speed, the ACC automatically slows down the host vehicle to match the speed of a somewhat-slower-moving vehicle traveling in its lane ahead and establishes an “appropriate” following distance, which in many ACC designs the driver has a role in setting, within defined minimum and maximum distance limits. After that, the ACC enters “distance-control” mode, matching the forward-vehicle's speed (unless it accelerates beyond the host vehicle's set-speed), as long as it is present. If another vehicle cuts in and stays in the lane, the ACC will decelerate the host vehicle to re-establish the “appropriate” distance and then re-enter “distance-control” mode. Whenever the lane ahead clears, due to either vehicle changing lanes, the ACC will cause the host vehicle to smoothly accelerate up to its cruise-control set-speed and keep that speed until a slower-moving vehicle is again detected in its lane ahead. The ACC typically uses a stand-alone forward-looking sensor system, which can not accurately judge whether a detected object is in fact on the roadway in the host vehicle's lane without generating an unacceptable number of nuisance alerts. Accordingly, it is generally understood in the automotive industry that ACC has been designed not to address this situation, and some ACC systems have even been designed not to respond to moving vehicles in their lanes traveling at speeds slow enough so that the driver might not realize they are moving. The reason for this is to attempt to avoid giving the driver a misimpression that the ACC does or should respond to stopped vehicles, with the result being that such an ACC provides even less functionality than it is capable of providing, due to this human-factors consideration. With an improved ability to sense objects and discriminate stationary objects, an improved version of ACC could developed to provide additional capabilities, such as the ability to respond to all vehicles in the host vehicle's lane, whether moving at normal highway speeds, moving slowly, moving and coming to a stop, or even stationary when first detected.
Another product is known as the Forward Collision Warning System (F-CWS). The F-CWS operates as an advisory system to the driver, who operates the vehicle in the normal way and is still fully responsible for safe operation. Various warnings are given for a wide range of potentially-dangerous situations involving moving vehicles and stationary vehicles or other large objects. Unlike ACC, the F-CWS is designed to operate while the vehicle is under full control of the driver, rather than while cruise control is operating, and also to warn the driver of a wide range of potentially dangerous situations, including those involving stationary objects that are judged by the F-CWS to lie in the expected path of the host vehicle. Due to the difficulty of distinguishing stopped vehicles or other stationary objects in the path of the vehicle, when compared to normal roadside or overhead highway structures, current products of this type on the sometimes warns the driver of a potential collision when there is no hazard, resulting in a nuisance alert. This is widely believed to be a primary reason why such products were first introduced on commercial vehicles, and have not been introduced on passenger vehicles, even in markets where the commercial vehicle products are currently in use (including the United States). Although an occasional nuisance alert can be an annoyance to a professional driver operating a commercial vehicle, such drivers are generally provided specific training on the use and limitations of these products, and with their extensive driving experience, often simply regard the occasional nuisance alert as a minor distraction. However, there is wide concern that passenger vehicle drivers, who may have much less driving experience and who cannot generally be required to undertake product-related training similar to commercial drivers, may react unpredictably to any nuisance alerts generated in error by a safety-related product such as F-CWS. Various approaches have been used in attempts to minimize these nuisance alerts. One such approach involves delaying an eventual warning while more information is taken to evaluate the probable location of a detected stationary object and the expected location of the host vehicle's lane ahead. If the stationary object does not seem to be in the projected host vehicle's lane, it is usually judged not dangerous. On the other hand, if the object is confirmed as a hazard, the warning will be delayed. This will allow the driver less response time to avoid the collision with the object. At the same time, the viewing angle of the sensor system may be purposely limited to help reduce nuisance alerts, which may limit the effective capabilities of the system.
Although attempts have been made at improving the sensor to better identify objects, such sensors have not resolved the problems to date or are too expensive for incorporation in commercial or passenger vehicles. Infrared laser sensors have been developed which provide both horizontal and vertica

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for stationary object detection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for stationary object detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for stationary object detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2941712

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.