Methods and apparatus for stabilizing tissue

Surgery – Internal organ support or sling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S898000

Reexamination Certificate

active

06251065

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to devices for stabilizing tissue and to methods for using such tissue-stabilizing devices, particularly cardiac tissue stabilizers. More particularly, the present invention relates to medical devices designed to stabilize the heart, for example, to retain the heart physically in an stabile position, during cardiac surgery. The apparatus of the present invention allows a surgeon to perform cardiac surgery on a warm beating heart, thus eliminating the need to place a patient on a cardiac bypass machine to stop the heart from beating. The methods and apparatus of the invention are particularly useful when performing coronary artery bypass grafting procedures such as coronary anastomosis.
BACKGROUND OF THE INVENTION
There are many instances in which tissue needs stabilization. One common instance is in the case of broken bones. Broken bones need to be set and then held rigid and in a stabile position by a cast in order to heal properly. Sprained joints, such as sprained ankles, wrists, and fingers, also require tissue stabilization. In these cases, splints, tapes, and bandages are often used to maintain the joint in a relatively stabile position. Other instances include neck and spinal injuries.
In addition to these examples of external tissue stabilization, internal organs may also need to be stabilized for specific medical procedures. For example, the heart may need to be stabilized during cardiac procedures. One such procedures is coronary artery bypass graft surgery (CABG), which is the most commonly performed cardiac operation, accounting for over 80% of all cardiovascular surgery. Indeed, more than 400,000 CABG operations were performed in 1997 alone. The clinical spectrum of presenting problems resulting in consideration for CABG includes angina, unstable angina, congestive heart failure due to ischemia, myocardial infarction, survival of sudden cardiac death, and asymptomatic ischemia. In recent years, the profile of a typical CABG patient has expanded to include higher-risk patients, such as older patients and patients with more advanced stages of coronary artery disease, as well as patients for “re-do” operations who have already had at least one CABG operation. The effect of these changes is reflected in the higher morbidity and mortality associated with these higher-risk patients.
One of the risks involved in performing CABG is that the heart is stopped to provide a stabile operating platform. This is accomplished through the use of catheters, a heart-lung machine, and cardioplegia. After the procedure has been finished, the heart needs to be defibrillated. Risks involved in stopping the heart include damage from the catheters such as in the creation of thrombi and the possibility that the heart will not defibrillate.
In recent years, advances have been made so that the heart does not need to be stopped in order to perform CABG procedures, allowing CABG to be performed on a warm, beating heart. To do so, a relatively stabile operating platform needs to be maintained. Conventional apparatus developed to provide a stabile operating platform include devices which apply pressure against the heart and devices with a finger-shaped configuration which adhere to the heart through suction. To apply these devices to the heart, it takes both of the surgeons hands to position the devices on the heart. In addition, the devices do not establish secure contact with the epicardium of the heart and often need to be repositioned during the CABG procedure, which is time consuming and a nuisance.
In view of the foregoing, one of the objectives of the present invention is to provide methods and apparatus for stabilizing tissue which overcome the drawbacks of conventional techniques.
It is another object of the present invention to provide methods and apparatus for stabilizing a heart during cardiac procedures, particularly a warm, beating heart.
It is yet another object of the present invention to provide methods and apparatus for stabilizing tissue which may be applied at remote locations.
It is still another object of the present invention to provide methods and apparatus for stabilizing tissue with pneumatics.
SUMMARY OF THE INVENTION
These and other objects are achieved by the tissue stabilizers of the present invention and the method for their use which stabilize tissue through the use of pneumatics. In accordance with broad, functional aspects of the present invention, the tissue stabilizer of the invention includes a bladder which is substantially flexible when at ambient pressure. However, when subject to negative pressure, such as through suction or vacuum, the bladder becomes substantially rigid. Because of these features, in use the tissue stabilizer may be positioned on tissue to be stabilized by, for example, wrapping the stabilizer around the tissue in the case of an arm, or contouring the stabilizer to the surface topography of the tissue in the case of a heart. When in a desired position, the rigidifying bladder may be subject to negative pressure, thereby rigidifying the tissue stabilizer. When rigid, the tissue stabilizer maintains the tissue in a stable position. The tissue stabilizer is particularly useful when configured for performing coronary artery bypass procedures (CABG) on a warm, beating heart.
In accordance with one aspect of the present invention, a tissue stabilizer includes a flexible rigidifying bladder and means for attaching the rigidifying bladder to tissue to be stabilized, such as straps with hook-and-eye fasteners. The rigidifying bladder includes a chamber, a port through which the chamber is evacuatable, and rigidifying structure disposed within the chamber. The rigidifying structure is configured to be substantially rigid when the chamber is evacuated. When the chamber is at ambient pressure, the rigidifying structure is substantially flexible to allow the stabilizer to be contoured to the tissue. The tissue stabilizer may include a valve for sealing the chamber when evacuated to maintain rigidity of the bladder.
The rigidifying structure may include opposing layers of mesh between which a plurality of movable beads are disposed. When the chamber is pneumatically evacuated, the rigidifying bladder collapses, thereby drawing the opposing layers of mesh together which, in turn, urges the beads together. The frictional forces between the beads and the mesh resist movement relative to each other, thereby providing rigidity. The rigidifying structure may include a plurality of walls which divide the inner chamber into a plurality of cells. The cells may be connected by air passages. The dividing walls prevent the migration of beads, thereby maintaining a substantially consistent distribution of beads and substantially consistent rigidity across the extent of the stabilizer.
The rigidifying bladder may also include a plurality of inner walls which separate the chamber into layers. The inner walls may includes air passages so that each of the layers is in pneumatic communication with each other. The rigidity of the rigidifying bladder is generally proportional to the number of layers. For example, in embodiments of the stabilizer configured to stabilize broken bones, the chamber may be divided into four or five layers, each of which includes a pair of opposing layers of mesh and a plurality of movable beads.
The tissue stabilizer of the present invention may be configured for many medical applications. For example, the tissue stabilizer may be configured as a portable neck brace for use by emergency medical teams for supporting and stabilizing an injured patient's neck. The stabilizer may serve as a cast or a splint for stabilizing a broken bone that has been set. The tissue stabilizer may also be configured for athletic applications, such as protective gear or ankle support. The tissue stabilizer of the present invention is particularly useful in stabilizing the heart during cardiac procedures.
In this regard, an alternative embodiment of the tissue stabilizer of the present invention

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for stabilizing tissue does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for stabilizing tissue, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for stabilizing tissue will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2485485

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.