Methods and apparatus for scout-based cardiac calcification...

X-ray or gamma ray systems or devices – Specific application – Computerized tomography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C378S095000

Reexamination Certificate

active

06256368

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to methods and apparatus for cardiac CT imaging, and more particularly to methods and apparatus that minimize an impact of heart motion in collecting calcification data from coronary images.
In at least one known computed tomography (CT) imaging system configuration, an x-ray source projects a fan-shaped beam which is collimated to lie within an X-Y plane of a Cartesian coordinate system and generally referred to as the “imaging plane”. The x-ray beam passes through the object being imaged, such as a patient. The beam, after being attenuated by the object, impinges upon an array of radiation detectors. The intensity of the attenuated beam radiation received at the detector array is dependent upon the attenuation of the x-ray beam by the object. Each detector element of the array produces a separate electrical signal that is a measurement of the beam attenuation at the detector location. The attenuation measurements from all the detectors are acquired separately to produce a transmission profile.
In known third generation CT systems, the x-ray source and the detector array are rotated with a gantry within the imaging plane and around the object to be imaged so that the angle at which the x-ray beam intersects the object constantly changes. A group of x-ray attenuation measurements, i.e., projection data, from the detector array at one gantry angle is referred to as a “view”. A “scan” of the object comprises a set of views made at different gantry angles, or view angles, during one revolution of the x-ray source and detector. In an axial scan, the projection data is processed to construct an image that corresponds to a two-dimensional slice taken through the object. One method for reconstructing an image from a set of projection data is referred to in the art as the filtered back projection technique. This process converts the attenuation measurements from a scan into integers called “CT numbers” or “Hounsfield units”, which are used to control the brightness of a corresponding pixel on a cathode ray tube display.
A main objective of cardiac CT applications is to perform calcification scoring, a diagnostic procedure in which an amount of calcification present in a patient's heart is estimated. At least one known CT imaging system requires about 0.5 s to complete data acquisition for an image. Although this speed is satisfactory for general imaging purposes, it is not fast enough to avoid motion-induced image artifacts in cardiac CT imaging, in which a typical cardiac cycle is about 1.0 s long. These artifacts present major problems for cardiac calcification scoring.
At least one other known CT imaging system reduces motion-induced image artifacts by acquiring data rapidly enough to effectively freeze cardiac motion. This imaging system employs a scanning electron beam to generate a moving source of x-rays rather than an x-ray source and detector on a rotating gantry. However, CT imaging systems employing scanning electron beams are quite expensive and are not available at many hospitals.
It would therefore be desirable to provide methods and apparatus that overcome motion-induced artifacts produced in images acquired by CT imaging systems having relatively slow scanning and detection systems such as rotating gantries. It would also be desirable to provide cardiac calcification scoring methods and apparatus utilizing such CT imaging systems. It would further be desirable to provide methods and apparatus that can readily identify and score calcification from the small incremental x-ray attenuation produced by small amounts of calcification.
BRIEF SUMMARY OF THE INVENTION
There is therefore provided, in one embodiment of the present invention, a method for producing CT images of a patient's heart suitable for calcification scoring, in which the heart has a cardiac cycle. The method includes steps of acquiring data representative of a first scout-scanned CT image of physical locations of the patient's body including at least a portion of the patient's heart at phases &phgr;
1
(L) of the cardiac cycle, acquiring data representative of a second scout-scanned CT image of the physical locations of the patient's body including at least a portion of the patient's heart at phases &phgr;
2
(L) of the cardiac cycle different from &phgr;
1
(L) at physical positions L of interest, and determining a difference image from the acquired data representative of the first scout-scanned CT image and the acquired data representative of the second scout-scanned CT image data. It is not necessary that &phgr;
1
(L) and &phgr;
2
(L) be constant as a function of position L.
The above described embodiment overcomes motion-induced image artifacts by making calcification signals more readily observable as a change between images. Moreover, even small amounts of calcification are readily identifiable and quantifiable, because much larger variations in x-ray attenuations that would otherwise hide calcification deposits are canceled out.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for scout-based cardiac calcification... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for scout-based cardiac calcification..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for scout-based cardiac calcification... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2498216

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.