Electricity: measuring and testing – Particle precession resonance – Using a nuclear resonance spectrometer system
Reexamination Certificate
2007-10-09
2007-10-09
Shrivastav, Brij (Department: 2859)
Electricity: measuring and testing
Particle precession resonance
Using a nuclear resonance spectrometer system
C324S300000, C324S307000, C324S318000
Reexamination Certificate
active
11118217
ABSTRACT:
The methods of the invention for scanning a band of frequencies using a nuclear quadrupole resonance detection system with an array of high temperature superconductor sensors to detect nuclear quadrupole resonance signals improve the nuclear quadrupole resonance detection system performance.
REFERENCES:
patent: 3373348 (1968-03-01), Vanier et al.
patent: 3764892 (1973-10-01), Rollwitz
patent: 4072768 (1978-02-01), Fraser et al.
patent: 4514691 (1985-04-01), De Los Santos et al.
patent: 5036279 (1991-07-01), Jonsen
patent: 5135908 (1992-08-01), Yang et al.
patent: 5206592 (1993-04-01), Buess et al.
patent: 5233300 (1993-08-01), Buess et al.
patent: 5258710 (1993-11-01), Black et al.
patent: 5262394 (1993-11-01), Wu et al.
patent: 5276398 (1994-01-01), Withers et al.
patent: 5351007 (1994-09-01), Withers et al.
patent: 5418213 (1995-05-01), Tanaka et al.
patent: 5457385 (1995-10-01), Sydney et al.
patent: 5583437 (1996-12-01), Smith et al.
patent: 5585723 (1996-12-01), Withers
patent: 5592083 (1997-01-01), Magnuson et al.
patent: 5594338 (1997-01-01), Magnuson
patent: 5656937 (1997-08-01), Cantor
patent: 5661400 (1997-08-01), Plies et al.
patent: 5750473 (1998-05-01), Shen
patent: 5751146 (1998-05-01), Hrovat
patent: 5804967 (1998-09-01), Miller et al.
patent: 5814987 (1998-09-01), Smith et al.
patent: 5814989 (1998-09-01), Smith et al.
patent: 5814992 (1998-09-01), Busse-Gravitz et al.
patent: 5872080 (1999-02-01), Arendt et al.
patent: 5952269 (1999-09-01), Ma et al.
patent: 5973495 (1999-10-01), Mansfield
patent: 5986455 (1999-11-01), Magnuson
patent: 5999000 (1999-12-01), Srinivasan
patent: 6025719 (2000-02-01), Anderson
patent: 6054856 (2000-04-01), Garroway et al.
patent: 6088423 (2000-07-01), Krug et al.
patent: 6091240 (2000-07-01), Smith et al.
patent: 6104190 (2000-08-01), Buess et al.
patent: 6108569 (2000-08-01), Shen
patent: 6150816 (2000-11-01), Srinivasan
patent: 6166541 (2000-12-01), Smith et al.
patent: 6169399 (2001-01-01), Zhang et al.
patent: 6194898 (2001-02-01), Magnuson et al.
patent: 6201392 (2001-03-01), Anderson et al.
patent: 6218943 (2001-04-01), Ellenbogen
patent: 6242918 (2001-06-01), Miller et al.
patent: 6291994 (2001-09-01), Kim et al.
patent: 6335622 (2002-01-01), James et al.
patent: 6370404 (2002-04-01), Shen
patent: D459245 (2002-06-01), Power
patent: 6420872 (2002-07-01), Garroway et al.
patent: 6486838 (2002-11-01), Smith et al.
patent: 6538445 (2003-03-01), James et al.
patent: 6541966 (2003-04-01), Keene
patent: 6556013 (2003-04-01), Withers
patent: 6566873 (2003-05-01), Smith et al.
patent: 6590394 (2003-07-01), Wong et al.
patent: 6617591 (2003-09-01), Simonson et al.
patent: 6653917 (2003-11-01), Kang et al.
patent: 6751489 (2004-06-01), Shen
patent: 6751847 (2004-06-01), Brey et al.
patent: 6777937 (2004-08-01), Miller et al.
patent: 6819109 (2004-11-01), Sowers et al.
patent: 6822444 (2004-11-01), Lai
patent: 6847208 (2005-01-01), Crowley et al.
patent: 6952163 (2005-10-01), Huey et al.
patent: 6956476 (2005-10-01), Buess et al.
patent: 6958608 (2005-10-01), Takagi et al.
patent: 7049814 (2006-05-01), Mann
patent: 7106058 (2006-09-01), Wilker et al.
patent: 2002/0068682 (2002-06-01), Shen
patent: 2002/0153891 (2002-10-01), Smith et al.
patent: 2002/0156362 (2002-10-01), Bock et al.
patent: 2002/0169374 (2002-11-01), Jevtic
patent: 2002/0190715 (2002-12-01), Marek
patent: 2003/0020553 (2003-01-01), Gao et al.
patent: 2003/0062896 (2003-04-01), Wong et al.
patent: 2003/0071619 (2003-04-01), Sauer et al.
patent: 2003/0119677 (2003-06-01), Olyan et al.
patent: 2003/0136920 (2003-07-01), Flores et al.
patent: 2004/0124840 (2004-07-01), Reykowski
patent: 2004/0222790 (2004-11-01), Karmi et al.
patent: 2004/0251902 (2004-12-01), Takagi et al.
patent: 2005/0104593 (2005-05-01), Laubacher
patent: 2005/0122109 (2005-06-01), Wilker et al.
patent: 2005/0140371 (2005-06-01), Alvarez et al.
patent: 2005/0146331 (2005-07-01), Flexman et al.
patent: 2005/0206382 (2005-09-01), Laubacher et al.
patent: 2005/0248345 (2005-11-01), Alvarez et al.
patent: 2005/0258831 (2005-11-01), Alvarez et al.
patent: 2005/0264289 (2005-12-01), Alvarez et al.
patent: 2005/0270028 (2005-12-01), Alvarez et al.
patent: 2006/0012371 (2006-01-01), Laubacher et al.
patent: 2006/0038563 (2006-02-01), Cisholm et al.
patent: 2006/0082368 (2006-04-01), McCambridge
patent: 2006/0119360 (2006-06-01), Yamamoto et al.
patent: 1 122 550 (2001-08-01), None
patent: 1 168 483 (2002-01-01), None
patent: 1 416 291 (2004-05-01), None
patent: 1 477 823 (2004-11-01), None
patent: 2 286 248 (1995-08-01), None
patent: 05 269108 (1993-10-01), None
patent: 07 265278 (1995-10-01), None
patent: WO92/17793 (1992-10-01), None
patent: WO92/17794 (1992-10-01), None
patent: WO92/19978 (1992-11-01), None
patent: WO92/21989 (1992-12-01), None
patent: WO94/05022 (1994-03-01), None
patent: WO95/34096 (1995-12-01), None
patent: WO 96/39636 (1996-12-01), None
patent: WO96/39636 (1996-12-01), None
patent: WO96/39638 (1996-12-01), None
patent: WO98/37438 (1998-08-01), None
patent: WO99/45409 (1999-09-01), None
patent: WO99/50689 (1999-10-01), None
patent: WO 00/70356 (2000-11-01), None
patent: WO 02/082115 (2002-10-01), None
patent: WO 02/098364 (2002-12-01), None
patent: WO 03/014700 (2003-02-01), None
patent: WO 03/040761 (2003-05-01), None
patent: WO 03/096041 (2003-11-01), None
patent: WO 04/001454 (2003-12-01), None
patent: WO 04/102596 (2004-11-01), None
patent: WO 05/059582 (2005-06-01), None
Miller, et al., “Performance of a High-Termperature Superconducting Probe for In Vivo Microscopy at 2.0 T”, Magnetic Resonance in Medicine, (1999) pp. 72-79, vol. 41.
W.H. Wong, et al., “HTS Coils for High Resolution Nuclear Magnetic Resonance Spectroscopy”, Advances in Cryogenic Engineering, (1996), pp. 953-959, New York.
V. Kotsubo et al., “Cryogenic System for a High Temperature Superconductor NMR Probe”, Advances in Cryogenic Engineering, Jul. 17, 1995, vol. 41, pp. 1857-1864, New York.
Kushida, et al., “Dependence on the Pure Quadrupole Resonance Frequency on Pressure and Temperature”, Physical Review, (Dec. 1956), pp. 1364-1377, vol. 104, No. 5, Massachusetts.
Vanier, “Temperature Dependence of the Pure Nuclear Quadrupole Resonance Frequency in KC103”, Canadian Journal of Physics, (Nov. 1960), pp. 1397-1405, vol. 38, No. 11, Canada.
Smith, et al., “Nitrogen Electric Quadrupole and Proton Magnetic Resonances in Thiourea”, Journal of Chemical Physics, (Oct. 1964), pp. 2403-2416, vol. 41, No. 8, New York.
Turner, C.W., High temperature superconductor circuit components for cryogenic microwave systems, Electrical and Computer Engineering, 1993, Canadian Conference on Vancouver, BC Canada (Sep. 14-17, 1993) XP 010118071.
W. A. Edelstein et al., A signal-to-noise calibration procedure for NMR imaging systems, Medical Physics, vol. 11 (2) Mar./Apr. 1984, pp. 180-185.
Hirschfeld, et al., “Short Range Remote NQR Measurements”, Journal of Molecular Structure, 1980, pp. 63-77, vol. 58, The Netherlands.
Garroway, et al., “Remote Sensing By Nuclear Quadrupole Resonance”, IEEE Transactions on Geoscience and Remote Sensing, Jun. 2001, pp. 1108-1118, vol. 39, No. 6.
Garroway, et al., “Narcotics and Explosives Detection by 14N pure NQR”, SPIE, 1993, pp. 318-327, vol. 2092, Maryland.
Charles Wilker, “HTS Sensors for NQR Spectroscopy”, vol. 1, pp. 143-146, 2004.
Anders Stensgaard, “Optimized Design of the Shielded-Loop Resonator”, Journal of Magnetic Resonance, 122, 120-126 (1996), Article No. 0187.
He, D.F. et al., “Metal detector based on high-Tc RF SQUID”, Physica C 378-381 (2002) pp. 1404-1407.
Bendall, et. al., “Elimination of Coupling between Cylindrical Transmit Coils and Surface-Receive Coils for in Vivo NMR” Magnetic Resonance in Medicine v3 p. 157-163, 1986.
Black, et al., “A High-Temperature Superconducting Receiver For Nuclear Magnetic Resonance Microscopy”, Science, vol. 259, pp. 793-795 Feb. 5, 1993.
Black, et al.,
Alvarez Robby L.
McCambridge James D.
E. I. du Pont de Nemours and Company
Fetzner Tiffany A.
Shrivastav Brij
LandOfFree
Methods and apparatus for scanning a band of frequencies... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatus for scanning a band of frequencies..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for scanning a band of frequencies... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3890498