Multiplex communications – Pathfinding or routing – Switching a message which includes an address header
Reexamination Certificate
2000-01-03
2004-01-27
Ton, Dang (Department: 2661)
Multiplex communications
Pathfinding or routing
Switching a message which includes an address header
C370S401000, C709S217000, C709S238000, C711S118000
Reexamination Certificate
active
06683873
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to transmission of data in a network environment. More specifically, the present invention relates to methods and apparatus redirecting network traffic. Still more specifically, techniques are described herein for redirecting packet flows from a device that does not own the flows.
Generally speaking, when a client platform communicates with some remote server, whether via the Internet or an intranet, it crafts a data packet which defines a TCP connection between the two hosts, i.e., the client platform and the destination server. More specifically, the data packet has headers which include the destination IP address, the destination port, the source IP address, the source port, and the protocol type. The destination IP address might be the address of a well known World Wide Web (WWW) search engine such as, for example, Yahoo, in which case, the protocol would be TCP and the destination port would be port
80
, a well known port for http and the WWW. The source IP address would, of course, be the IP address for the client platform and the source port would be one of the TCP ports selected by the client. These five pieces of information define the TCP connection.
Given the increase of traffic on the World Wide Web and the growing bandwidth demands of ever more sophisticated multimedia content, there has been constant pressure to find more efficient ways to service data requests than opening direct TCP connections between a requesting client and the primary repository for the desired data. Interestingly, one technique for increasing the efficiency with which data requests are serviced came about as the result of the development of network firewalls in response to security concerns. In the early development of such security measures, proxy servers were employed as firewalls to protect networks and their client machines from corruption by undesirable content and unauthorized access from the outside world. Proxy servers were originally based on Unix machines because that was the prevalent technology at the time. This model was generalized with the advent of SOCKS which was essentially a daemon on a Unix machine. Software on a client platform on the network protected by the firewall was specially configured to communicate with the resident demon which then made the connection to a destination platform at the client's request. The demon then passed information back and forth between the client and destination platforms acting as an intermediary or “proxy”.
Not only did this model provide the desired protection for the client's network, it gave the entire network the IP address of the proxy server, therefore simplifying the problem of addressing of data packets to an increasing number of users. Moreover, because of the storage capability of the proxy server, information retrieved from remote servers could be stored rather than simply passed through to the requesting platform. This storage capability was quickly recognized as a means by which access to the World Wide Web could be accelerated. That is, by storing frequently requested data, subsequent requests for the same data could be serviced without having to retrieve the requested data from its original remote source. Currently, most Internet service providers (ISPs) accelerate access to their web sites using proxy servers.
Unfortunately, interaction with such proxy servers is not transparent, requiring each end user to select the appropriate proxy configuration in his or her browser to allow the browser to communicate with the proxy server. For the large ISPs with millions of customers there is significant overhead associated with handling tech support calls from customers who have no idea what a proxy configuration is. Additional overhead is associated with the fact that different proxy configurations must be provided for different customer operating systems. The considerable economic expense represented by this overhead offsets the benefits derived from providing accelerated access to the World Wide Web. Another problem arises as the number of WWW users increases. That is, as the number of customers for each ISP increases, the number of proxy servers required to service the growing customer base also increases. This, in turn, presents the problem of allocating packet traffic among multiple proxy servers.
Network caching represents an improvement over the proxy server model which is transparent to end users, high performance, and fault tolerant. By altering the operating system code of an existing router, the router is enabled to recognize and redirect data traffic having particular characteristics such as, for example, a particular protocol intended for a specified port (e.g., TCP with port
80
), to one or more network caches connected to the router via an interface having sufficient bandwidth. If there are multiple caches connected to the cache-enabled router, the router selects from among the available caches for a particular request based on a load balancing mechanism.
The network cache to which the request is re-routed “spoofs” the requested destination platform and accepts the request on its behalf via a standard TCP connection established by the cache-enabled router. If the requested information is already stored in the cache it is transmitted to the requesting platform with a header indicating its source as the destination platform. If the requested information is not in .the cache, the cache opens a direct TCP connection with the destination platform, downloads the information, stores it for future use, and transmits it to the requesting platform. All of this is transparent to the user at the requesting platform which operates exactly as if it were communicating with the destination platform. Thus, the need for configuring the requesting platform to suit a particular proxy configuration is eliminated along with the associated overhead. An example of such a network caching technique is embodied in the Web Content Caching Protocol (WCCP) provided by Cisco Systems, Inc., a specific embodiment of which is described in copending, commonly assigned, U.S. patent application Ser. No. 08/946,867 for METHOD AND APPARATUS FOR FACILITATING NETWORK DATA TRANSMISSIONS filed Oct. 8, 1997, the entirety of which is incorporated herein by reference for all purposes.
As a cache system starts up, traffic that is redirected to the cache system may become disrupted under certain conditions. For example, if a new flow is established while the cache system is shut down, this new flow will not be recognized by the cache system when it reconnects or starts up. (A flow is generally defined as a stream of packets or traffic that originates from a same source and is directed to a same destination.) In other words, the cache system receives the packets in mid-flow after the flow has been established with some other destination. Since the flow has not been established with the cache system, it is not recognized as belonging to the cache system. This unrecognized flow will be reset by the cache system under current TCP procedures. Thus, any flows that are established outside of the cache system, i.e. with the intended destination, will be automatically reset when the cache system starts up and such flows are redirected to the cache system. Of course, any flow disconnects are undesirable. As the number of clients that access a given cache system at one time increase, the incidence of traffic disruptions caused by a cache system starting up during mid-flow also increase. Thus, the cache system may affect a significantly large amount of traffic during start up. Therefore, there is a need for improving a cache system's start up procedures such that traffic is not disrupted by the cache system.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides an apparatus and method for intelligently determining whether a cache system is going to process an incoming packet flow or redirect it to its original intended destination. The originally intended destination is the destinatio
Aviani, Jr. James A.
Cieslak Martin
Kagan Martin A.
Kwok Danny
Tiwana Gurumukh S.
Beyer Weaver & Thomas LLP.
Cisco Technology Inc.
Phan Tri H.
Ton Dang
LandOfFree
Methods and apparatus for redirecting network traffic does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatus for redirecting network traffic, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for redirecting network traffic will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3250221