Methods and apparatus for radar data processing

Communications: directive radio wave systems and devices (e.g. – Testing or calibrating of radar system – By monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S02500R, C342S061000, C342S062000, C342S063000, C342S064000, C342S065000, C342S118000, C342S120000, C342S147000, C342S156000, C342S175000, C342S194000, C342S195000, C342S357490, C342S357490

Reexamination Certificate

active

06744401

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to testing of radar systems, and more specifically to a radar testing system which is capable of synchronizing radar data with global positioning satellite (GPS) data and digital elevation map (DEM) data to determine an accuracy of the radar.
The proper navigation of an aircraft in all phases of its flight is based to a large extent upon the ability to determine the terrain and position over which the aircraft is passing. In this regard, instrumentation, such as radar systems, and altimeters in combination with the use of accurate electronic terrain maps, which provide the height of objects on a map, aid in the flight path of the aircraft. Electronic terrain maps are well known and are presently used to assist in the navigation of aircraft.
Pulse radar altimeters demonstrate superior altitude accuracy due to their inherent leading edge return signal tracking capability. The pulse radar altimeter transmits a pulse of radio frequency (RF) energy, and a return echo is received and tracked using a tracking system. The interval of time between signal bursts of a radar system is called the pulse repetition interval (PRI). The frequency of bursts is called the pulse repetition frequency (PRF) and is the reciprocal of PRI.
FIG. 1
shows an aircraft
2
with the Doppler effect illustrated by isodops as a result of selection by the use of Doppler filters. The area between the isodops of the Doppler configuration will be referred to as swaths. The Doppler filter, and resulting isodops are well known in this area of technology and will not be explained in any further detail. Further, the aircraft
2
in the specification will be assumed to have a vertical velocity of zero. As is known, if a vertical velocity exists, the median
8
of the Doppler effect will shift depending on the vertical velocity. If the aircraft
2
has a vertical velocity in a downward direction, the median of the Doppler would shift to the right of the Figure. If the aircraft
2
has a vertical velocity in an upward direction, the Doppler would shift to the left of the Figure. Again, it will be assumed in the entirety of the specification that the vertical velocity is zero for the ease of description. However, it is known that a vertical velocity almost always exists.
Radar illuminates a ground patch bounded by the antenna beam
10
from an aircraft
2
.
FIG. 1
a shows a top view of the beam
10
along with the Doppler effect and
FIG. 1
b
shows the transmission of the beam
10
from a side view. To scan a particular area, range gates are used to further partition the swath created by the Doppler filter. To scan a certain Doppler swath, many radar range gates operate in parallel. With the range to each partitioned area determined, a record is generated representing the contour of the terrain below the flight path. The electronic maps are used with the contour recording to determine the aircraft's position on the electronic map. This system is extremely complex with all the components involved as well as the number of multiple range gates that are required to cover a terrain area. As a result, the computations required for this system are very extensive.
In addition to the complexity, the precision and accuracy of the distance to a particular ground area or object has never been attained using an airborne radar processor.
BRIEF SUMMARY OF THE INVENTION
In one aspect, a method for testing a radar system utilizing flight test radar data is provided. The method comprises time synchronizing measured radar data with a GPS based time marker, storing at least a portion of the time synchronized radar data, and storing the GPS data. The method further comprises processing the stored GPS data to correspond with a physical position of an antenna which received the radar data, providing a radar model and comparing the processed radar model data to the stored radar data.
In another aspect, a radar data recording and processing system is provided. The system comprises an aircraft GPS which is configured to provide at least one time mark signal and at least one timing count signal, a memory device, and a data formatter. The data formatter is configured to digitize samples of radar data, time synchronize the digitized radar data with GPS data using the time mark signal and the timing count signal, generate control words relating to the radar data, the time mark signal, and the timing count signal, and place the controls words and radar data in a data stream for storage in said memory device.


REFERENCES:
patent: 4164036 (1979-08-01), Wax
patent: 4310894 (1982-01-01), Lee et al.
patent: 4328495 (1982-05-01), Thue
patent: 4553221 (1985-11-01), Hyatt
patent: 4684950 (1987-08-01), Long
patent: 4851852 (1989-07-01), Bjorke et al.
patent: 5107268 (1992-04-01), Sturm et al.
patent: 5140331 (1992-08-01), Aulenbacher et al.
patent: 5150125 (1992-09-01), Hager
patent: 5173706 (1992-12-01), Urkowitz
patent: 5264853 (1993-11-01), Sturm et al.
patent: 5309161 (1994-05-01), Urkowitz et al.
patent: 5389931 (1995-02-01), Anderson et al.
patent: 5432520 (1995-07-01), Schneider et al.
patent: 5477226 (1995-12-01), Hager et al.
patent: 5485157 (1996-01-01), Long
patent: 5589833 (1996-12-01), Randall et al.
patent: 5646857 (1997-07-01), McBurney et al.
patent: 5867119 (1999-02-01), Corrubia et al.
patent: 5892462 (1999-04-01), Tran
patent: 5945926 (1999-08-01), Ammar et al.
patent: 5952961 (1999-09-01), Denninger
patent: 5969667 (1999-10-01), Farmer et al.
patent: 6011505 (2000-01-01), Poehler et al.
patent: 6025800 (2000-02-01), Hager
patent: 6125155 (2000-09-01), Lesthievent et al.
patent: 6148195 (2000-11-01), Schuchman et al.
patent: 6232910 (2001-05-01), Bell et al.
patent: 6233522 (2001-05-01), Morici
patent: 6260052 (2001-07-01), Song
patent: 6297764 (2001-10-01), Wormington et al.
patent: 6337888 (2002-01-01), Huang et al.
patent: 6362775 (2002-03-01), Geobel et al.
patent: 6362776 (2002-03-01), Hager et al.
patent: 6507289 (2003-01-01), Johnson et al.
patent: 2213339 (1989-08-01), None
Narayan A. Acharya et al., “Intelligent FDI Management in the Adaptive Tactical Navigator”, IEEE; Nov. 29, 1988; pp. 120-125; The Analytic Sciences Corporation, Reading, MA.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for radar data processing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for radar data processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for radar data processing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3308981

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.