Boring or penetrating the earth – Boring a submerged formation
Reexamination Certificate
2002-10-04
2004-06-08
Tsay, Frank (Department: 3672)
Boring or penetrating the earth
Boring a submerged formation
C175S007000, C175S073000
Reexamination Certificate
active
06745853
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods and apparatus for drilling an offshore well from a platform, and more particularly, to methods and apparatus for the open hole drilling of a subsea borehole using lightweight pipe components, and still more particularly, to methods and apparatus for drilling a conductor casing borehole through a riser with a lightweight drill string.
2. Description of the Related Art
Offshore hydrocarbon drilling and producing operations are typically conducted from a drilling rig located either on a bottom-founded offshore platform or on a floating platform. A bottom-founded platform extends from the seafloor upwardly to a deck located above the surface of the water, and at least a portion of the weight of the platform is supported by the seafloor. In contrast, a floating platform is a ship, vessel, or other structure, such as a tension-leg platform, for example, in which the weight of the platform is supported by water buoyancy.
In recent years, exploration and production of offshore crude oil and natural gas reservoirs has expanded into ever-deeper waters. Successful drilling operations have been conducted in deep waters of at least 3,000 feet deep, and ultra-deep waters ranging from 5,500 to 10,000 feet deep. With increasing water depths, drilling operations conducted from moored or dynamically positioned floating platforms have become more prevalent since economic and engineering considerations militate against the use of bottom-founded drilling platforms commonly used in shallow water.
Regardless of whether a bottom-founded or floating platform is used, conventional methods for drilling an offshore well are similar. In such operations, the platform supports a drilling rig and associated equipment, and must include adequate deck space for pipe storage and handling. The platform is positioned near the wellsite, and a drill string, typically formed of jointed steel pipe that is threaded together one joint at a time, conveys a bottom-hole drilling assembly (BHA) from the platform to the seafloor. A drill bit, disposed at the terminal end of the BHA, drills the well.
Riserless Drilling
When drilling from a floating platform, the upper portion of the well is drilled by open hole drilling in that no conduit is provided for the returns to flow to the platform. Therefore, in open hole drilling the returns, i.e. the drilling fluid, cuttings, and well fluids, are discharged onto the seafloor and are not conveyed to the surface. To drill the initial upper portion of the well, the drill string typically extends unsupported through the water to the seafloor without a riser. In more detail, first an outer casing, known as “structural casing”, typically having a diameter of 30-inches to 36-inches, is installed in the uppermost section of the well, with a low-pressure wellhead housing connected thereto. In soft formations, the structural casing is typically jetted into place. In this process, an assembly is lowered to the seafloor on a conventional drill string. The assembly includes the structural casing, and typically, a BHA with drill collars, a downhole motor, and a drill bit. The bit is positioned just below the bottom end of the structural casing and is sized to drill a borehole with a slightly smaller diameter than the diameter of the casing. As the borehole is drilled, the structural casing moves downwardly with the BHA. The weight of the structural casing and BHA drives the casing into the sediments. The structural casing, in its final position, generally extends downwardly to a depth of 150 to 400 feet, depending upon the formation conditions and the final well design. After the structural casing is in place, it is released from the drill string and BHA. The drill string and BHA are then tripped back to the platform, or are, in some cases, lowered to drill below the structural casing.
In more competent formations, the structural casing is similar, but it is installed in a two-step process. First, a borehole larger than the structural casing is drilled. Then the structural casing is run into the borehole and cemented into place. Typically, the low-pressure wellhead housing is connected to the upper end of the structural casing and installed at the same time, such that the structural casing extends below the seafloor with the low-pressure wellhead housing above the seafloor.
Once the structural casing and the low-pressure wellhead housing are installed, the BHA on the drill string drills downwardly below the structural casing to drill a new borehole section using open hole drilling for an intermediate casing, known as “conductor casing,” which is typically 20-inches in diameter. Thus, the structural casing guides the BHA as it begins to drill the conductor casing interval. During open hole drilling, returns of the drilling fluid and cuttings are discharged onto the seafloor.
After the borehole section for the conductor casing is drilled, the BHA is tripped to the surface. Then conductor casing, with a high-pressure wellhead housing connected to its upper end, and a float valve disposed in its lower end, is run into the drilled conductor borehole section extending below the structural casing. The conductor casing is cemented into place in a well known manner, with the float valve preventing cement from flowing upwardly into the conductor casing after cement placement. The conductor casing generally extends downwardly to a depth of 1,000 to 3,000 feet below the seafloor, depending on the formation conditions and the final well design. The high-pressure wellhead housing engages the low-pressure wellhead housing to form the subsea wellhead, thereby completing the riserless portion of the drilling operations. A subsea blowout preventer (BOP) stack is typically conveyed down to the seafloor by a riser and latched onto the subsea wellhead housing. The riser is thereby installed with its lower end connected to the subsea wellhead via the BOP stack and the riser extending to the platform at the surface. Subsequent casing strings are hung and well operations are conducted through the subsea wellhead.
Riserless drilling, as described above for drilling the conductor casing borehole, is conventionally performed using a drill string formed of steel pipe joints having a size and weight sufficient to withstand the lateral forces imposed by water currents. However, this conventional method of riserless drilling has a number of disadvantages, especially when drilling from a floating platform in deep or ultra-deep waters.
Drilling with a Riser
Once the well reaches a certain depth, further drilling requires the use of a weighted drilling fluid to maintain control of downhole pressures, and such drilling fluids are costly enough to warrant returning the drilling fluid to the platform for cleaning so that the same drilling fluid may be recirculated for further drilling. Thus, after the riserless drilling portion of the well has been drilled and cased, a low-pressure riser, formed by joining sections of casing or pipe that is typically 21-inches in diameter, is deployed between the floating platform and the wellhead equipment. The riser is provided to guide the drill string to the wellhead equipment for conducting further well drilling operations, and to provide a conduit for returning drilling fluid from the well to the floating platform.
Once the riser is in place, the drill string and BHA are lowered through the riser, the subsea wellhead, and the conductor casing to drill through the float valve into the seafloor to form another borehole section for another string of casing. The next casing, known as “surface casing,” which is typically 13⅜ to 16 inches in diameter, is lowered into the drilled borehole and cemented into place via conventional procedures. The surface casing generally extends to a depth of 2,500 to 5,000 feet below the seafloor, depending on the formation characteristics and final well design. Subsequent, sma
Naquin Carey John
Turner Katherine M.
Conley & Rose, P.C.
Halliburton Energy Service,s Inc.
Tsay Frank
LandOfFree
Methods and apparatus for open hole drilling does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatus for open hole drilling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for open hole drilling will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3326705