Methods and apparatus for obtaining enhanced spectroscopic...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S034000, C372S029020

Reexamination Certificate

active

06681133

ABSTRACT:

TECHNICAL FIELD OF INVENTION
The invention relates to a method and apparatus for qualitative or quantitative noninvasive assessment of the metabolic and structural components of skin and nearby tissues using Raman spectroscopy. The invention relates to maintaining depth and position of focus of a Raman excitation source, regardless of whether an imaging light collection system is used. This system also provides first order servo correction for automatic focusing of an imaging system. The invention additionally relates to identifying spectroscopic depth markers in tissues, and to detecting skin abnormalities and assessing the aging of skin and related tissues.
BACKGROUND OF THE INVENTION
There has always been a need for reliable and precise quantitative methods and associated apparatus for diagnosing medical abnormalities and for assessing the general condition of body tissues. While any approach that offers early and reliable warning of medical problems has some utility, noninvasive methods offer many advantages. Anticipation by a patient of pain and scarring associated with invasive procedures can cause delays in seeking medical attention. There is also a myriad of inconveniences, risks and difficulties associated with direct collection and contact with patient body fluids. For these reasons, there has been intense scientific and engineering research into devising noninvasive approaches to assessment and diagnosis of medical conditions.
Use of spectroscopic methods, while of considerable use in direct in vitro application to fluids, has not found equal in vivo application. In vivo sampling is substantially more complicated for a variety of reasons, although some of the challenges can be handled by reference to in vitro procedures. First, even in vitro procedures require at least some sample preparation before spectroscopic interrogation. But in vivo samples cannot be handled with nearly the ease of in vitro samples. All chemometric analyses benefit from the availability of samples having known composition of various analytes. Selectively modulated in vitro samples are much easier to synthesize or otherwise obtain than in vivo samples. Thus, samples for chemometric interpretation of in vivo samples can be expected to require specialized approaches to sample preparation and specifically designed methods for obtaining modulated samples of known composition. Long data collection times are needed to extract small signals from some samples, but in vivo sampling requires the patient to endure the waiting. Prolonged data collection is not always practical. Moreover, applying too much excitation light to in vivo samples can lead to catastrophic results.
Noninvasive in vivo chemical analysis of human and animal tissues has long been a goal of chemists and the medical community. Blood oximetry is an example of a noninvasive form of analysis that is now ubiquitous in intensive care and other situations. Noninvasive techniques involve contacting the tissue in question with some form of electromagnetic radiation, and detecting the effect of the contact on the radiation. The frequency range of the radiation and the choice of tissue to contact, determines the type of structural, concentration or other physico-chemical information that is available.
The optics of human skin have been extensively reviewed. The interaction with visible light contacting blood in the capillary beds just beneath the epidermis of human skin can be exploited to estimate the oxygen content of blood, thereby giving a quantitative measure of the condition of the patient's respiratory and cardiovascular systems, i.e. blood oximetry. The present invention is directed to assessing the condition of the skin at the molecular and supramolecular scale, making vibrational spectroscopy an ideal probe.
SUMMARY OF THE INVENTION
The invention provides a method and apparatus for obtaining feedback to drive a servo system for aligning and maintaining alignment in optical systems that bring light to an in vivo skin sample, for adjusting the focus of the optical system, for adjusting the net depth of focus of the optical system within the in vivo system under characterization, and for driving a tissue-directed search and mapping algorithm. The invention additionally provides a method and apparatus for obtaining feedback to drive a servo system for aligning and maintaining alignment in optical systems that collect light from an in vivo skin sample, and for adjusting the focus of the optical system. These methods comprise adjusting the angle of incidence of electromagnetic radiation and/or providing a shielding lens to block scattered incident light, or otherwise limiting the field of view of the Raman scattered radiation collection system to exclude optical surfaces of the excitation delivery portion of the optical system.
Also provided is a method and apparatus for identifying spectroscopic depth markers in tissues. In one embodiment, the method comprises discriminating between Raman signals originating on outer portions of skin from signals originating from substances deeper within the skin or other tissues. In some embodiments, these methods comprise selecting optics for Raman detection to maximize one or more Raman features corresponding to lipids and proteins of the skin.
The invention provides a method and apparatus for obtaining spectroscopic information from living tissue of a subject. In one embodiment, the method comprises irradiating a tissue of interest in a subject with light having an excitation wavelength and that passes from a light source through a first adjustable lens, and passing spectra that are emitted by the tissue through a second adjustable lens. The spectra that are passed through the second adjustable lens are then collected and analyzed to determine a target signal associated with an analyte of interest. The method further comprises deriving a correction signal from the target signal, and adjusting the position of the first adjustable lens or the second adjustable lens on the basis of the correction signal so as to enhance the target signal. In a preferred embodiment, the spectra are Raman spectra. The method can optionally further comprise selectively dispersing a target wavelength of the collected spectra prior to analyzing the collected spectra. Preferably, the dispersing comprises filtering out wavelengths other than the target wavelength, or passing the collected spectra through a spectrograph.
In another aspect, the invention provides a non-invasive method and apparatus for spectroscopically probing and mapping a target layer of skin in a subject. The method comprises irradiating a target layer of skin in a subject with light having an excitation wavelength that passes from a light source through a first adjustable lens, passing spectra that are emitted by the tissue through a second adjustable lens, and collecting spectra that are passed through the second adjustable lens. The method further comprises analyzing the collected spectra to determine a target signal associated with the target layer of skin, and adjusting the position of the first adjustable lens or the second adjustable lens so as to increase the target signal. Optionally, the method further comprises deriving a correction signal from the target signal and relaying the correction signal to the first adjustable lens or to the second adjustable lens, wherein the correction signal effects an adjustment of the first adjustable lens or the second adjustable lens. In one embodiment, the method and apparatus include an adjustable aperture, such as one or more irises, as in a confocal microscope, positioned between the skin and the light collection system. A correction signal derived from the target signal is then used as feedback to the adjustable aperture to optimize the collection of spectra from the target layer of skin.
In another aspect, the invention provides a method and apparatus for spatial mapping and detecting abnormalities in living tissue of a subject. The method comprises irradiating a tissue of interest in a subject with ligh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for obtaining enhanced spectroscopic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for obtaining enhanced spectroscopic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for obtaining enhanced spectroscopic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3248567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.