Methods and apparatus for obtaining and maintaining position...

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S462390

Reexamination Certificate

active

06651889

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to improved bar code scanning and processing. More particularly, the invention relates to methods and apparatus for achieving a highly precise determination of the position of a rotating optical element, or spinner, of a scanner, in order to provide a reference position for the spinner, and then using a sensor to determine the relative position of the spinner with respect to the reference position, in order to maintain a highly precise determination of the absolute position of the spinner at any desired point in the rotation of the spinner.
BACKGROUND OF THE INVENTION
Bar code scanners are used in a wide variety of applications and provide a fast and convenient way to collect data. Bar code scanners typically operate in one of at least two modes. A scanner may operate in an omnidirectional or multiline scan mode, producing a multiline scan pattern in which an array of scan lines is used to illuminate a bar code. Alternatively, a scanner may operate in a single line mode, producing a single scan line which is used to illuminate a bar code. A scanner may suitably be designed to operate exclusively in a single line or multiline mode, or may alternatively be designed so that the desired mode can be selected. Operation of a scanner in a single line mode provides the advantage of allowing an operator to aim the scan line more precisely, in order to avoid inadvertently scanning bar codes which may be located near the bar code which it is desired to scan.
In order to produce a scan pattern, a scanner may direct a laser beam from a laser source to a mirrored polygonal spinner which is rotated by an electric motor. The sides of the polygonal spinner may be referred to as facets. The spinner directs light to one or more of a set of pattern mirrors in order to produce a scan pattern which is directed to and emerges from an aperture. It is possible to design a scanner which produces only an omnidirectional scan pattern. In a scanner having such a design, the laser source may simply be turned on continuously as the spinner rotates. The laser beam is sequentially directed by the spinner over the entire set of pattern mirrors, which reflect the laser beam to produce lines making up the scan pattern. Alternatively, it is possible to design a scanner which produces only a single line scan pattern. In such a scanner, the pattern mirror and other optical components of the scanner may be arranged and configured so that the laser source may remain activated at all times, while the laser beam is reflected out of the scanner so as to form a single line scan pattern.
In order to provide greater flexibility in operation, it may be desirable to design a scanner which can operated in an omnidirectional or a single line scan mode, depending on a user selection or other criteria. In designing such a scanner, it is desirable to use a single set of pattern mirrors to minimize the cost and complexity of the scanner. The pattern mirrors and other internal optics are designed in such a way that a multiline scan pattern will be produced if the laser beam remains activated at all times during the rotation of the spinner, and that a single line scan pattern will be produced if the laser beam is activated and deactivated when the spinner is in appropriate positions. Typically, the laser source is activated when the spinner is oriented such that the laser beam is reflected by the spinner so as to be directed to an initial position and remains activated while the spinner turns so that the reflected laser beam is swept from the initial position to a terminal position. The laser source is deactivated when the reflected laser beam reaches the terminal position, and remains deactivated while the spinner turns, until the spinner is once again in a position to direct the reflected laser beam to the initial position.
In order to produce a single line scan pattern, it is important to turn the laser source on and off when the spinner is at the correct positions. Because the speed of the spinner is typically constant once the spinner has achieved operating speed, the relative position of the spinner can be known once the spinner has achieved operating speed. For example, it is possible to know when the spinner has turned through 20 degrees from a reference position. However, in order to know the actual position of the spinner at a particular time, it is necessary to establish an accurate initial position for the spinner at some point after the spinner has achieved operating speed. Establishing an initial position using a sensing device such as, for example, a Hall sensor, is difficult because variations from motor to motor make it difficult to adapt a sensor to determine the position of the specific motor used, and because additional difficulties are introduced by the acceleration period while the spinner is started and brought to operating speed. There exists, therefore, a need for a highly accurate way to identify when a spinner is at a reference position. In many applications it will be desirable for a scanner to provide a user with the flexibility to choose among a number of different scan patterns. For example, it may be desirable to provide a choice between horizontal, vertical or diagonal single line scan patterns, or to allow user or automatic selection of wider or narrower single line scan patterns. In order to provide such flexibility, it is necessary to be able to turn the laser source on and off at selected points during the rotation of the spinner, in order to trace the laser beam appropriately across one or more of the pattern mirrors. In order to accomplish this, it is highly desirable to maintain an accurate determination of the position of the spinner throughout its rotation.
There exists, therefore, a need for a way to maintain a highly accurate determination of a spinner position as the spinner rotates, in order to determine when to activate and deactivate a laser beam in order to produce single line and other desired scan patterns.
SUMMARY OF THE INVENTION
The present invention determines the position of a spinner using highly accurate means and maintains a highly accurate determination of the spinner position as the spinner continues to rotate during scanner operation. This determination of the spinner position may then be used to determine when to turn a laser source on and off to produce a desired scan pattern. It will be recognized that a scan pattern produced by a scanner appears as a static pattern, but is in reality the result of the extremely rapid tracing of one or more rays of light emerging from the scanner. A single line scan pattern is the result of the repeated tracing of a ray of light across a single line, and an omnidirectional or multiline scan pattern is typically the repeated sequential tracing of a ray of light over a sequence of single lines.
In order to provide accurate spinner position information to produce desired scan patterns, the present invention employs optical techniques to determine a reference position of the spinner. That is, optical techniques are used to determine when the spinner is at a predefined, known position. U.S. application Ser. No. 09/878,462, filed on even date herewith, assigned to the assignee of the present invention and incorporated herein by reference in its entirety, describes exemplary optical techniques and describes the use of optical sensing in order to trigger the deactivation of a laser source producing a laser beam once the spinner is in a position so as to reflect the laser beam to the terminal position of a scan pattern. The aforementioned application further describes the use of timing information based on a known speed of the spinner in order to determine the proper time to activate the laser beam so that the laser beam will be properly directed to the initial position of the scan pattern. The optical techniques described in the above referenced application are used in a scanner according the present invention to identify when the spinner is in a reference position. Once the spinn

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for obtaining and maintaining position... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for obtaining and maintaining position..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for obtaining and maintaining position... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.