Optics: measuring and testing – Egg candling – Photoelectric
Reexamination Certificate
2000-12-20
2003-03-18
Font, Frank G. (Department: 2877)
Optics: measuring and testing
Egg candling
Photoelectric
C356S052000
Reexamination Certificate
active
06535277
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to eggs and, more particularly, to methods and apparatus for classifying eggs.
BACKGROUND OF THE INVENTION
Discrimination between poultry eggs on the basis of some observable quality is a well-known and long-used practice in the poultry industry. “Candling” is a common name for one such technique, a term which has its roots in the original practice of inspecting an egg using the light from a candle. As is known to those familiar with poultry eggs, although egg shells appear opaque under most lighting conditions, they are in reality somewhat translucent, and when placed in front of a direct light, the contents of the egg can be observed.
In most practices, the purpose of inspecting eggs, particularly “table eggs” for human consumption, is to identify and then segregate those eggs which have a significant quantity of blood present, such eggs themselves sometimes being referred to as “bloods” or “blood eggs.” These eggs are less than desirable from a consumer standpoint, making removal of them from any given group of eggs economically desirable.
Eggs which are to be hatched to live poultry also may be candled midway through embryonic development or later to identify infertile (“clear”) eggs and remove them from incubation to thereby increase available incubator space. Such inspection and removal is particularly useful in turkey hatcheries. Candlers also attempt to identify and remove “rotted” and other dead eggs on the basis of their internal color. Unfortunately, conventional techniques may be difficult and unreliable, however, so that dead and rotted eggs may be inadvertently returned to incubation.
U.S. Pat. Nos. 4,955,728 and 4,914,672, both to Hebrank, describe a candling apparatus that uses infrared detectors and the infrared radiation emitted from an egg to distinguish live from infertile eggs.
U.S. Pat. No. 4,671,652 to van Asselt et al. describes a candling apparatus in which a plurality of light sources and corresponding light detectors are mounted in an array, and the eggs passed on a flat between the light sources and the light detectors.
In recent years, spectrographic techniques have been developed which irradiate eggs with particular frequencies of light which are sensitive to the presence of one or more of the characteristic components of blood (e.g., hemoglobin) to make a more accurate determination of whether or not the contents of the egg are indeed filled with blood or whether some other factor is interfering with the egg's appearance or quality.
Other conventional techniques are used to inspect table eggs for the purpose of determining whether or not they are cracked. These techniques also use light sources and detectors because cracked eggs will often transmit more incident light towards a detector than will intact ones.
Recently, however, there have developed other reasons for distinguishing between eggs. One of these reasons is the advancements in techniques for treating poultry embryos with medications, nutrients, hormones or other beneficial substances while the embryos are still in the egg. Such techniques are quite advantageous compared to treatment of newly born chicks which often must be medicated, for example, by being hand inoculated one by one.
Injections of various substances into avian eggs are employed in the commercial poultry industry to decrease post-hatch mortality rates or increase the growth rates of the hatched bird. Similarly, the injection of virus into live eggs is utilized to propagate virus for use in vaccines. Examples of substances that have been used for, or proposed for, in ovo injection include vaccines, antibiotics and vitamins.
Examples of in ovo treatment substances and methods of in ovo injection are described in U.S. Pat. No. 4,458,630 to Sharma et al. and U.S. Pat. No. 5,028,421 to Fredericksen et al., the contents of which are incorporated by reference herein in their entireties. The selection of both the site and time of injection treatment can also impact the effectiveness of the injected substance, as well as the mortality rate of the injected eggs or treated embryos. See, e.g., U.S. Pat. No. 4,458,630 to Sharma et al., U.S. Pat. No. 4,681,063 to Hebrank, and U.S. Pat. No. 5,158,038 to Sheeks et al. U.S. Patents cited herein are hereby incorporated by reference herein in their entireties.
U.S. Pat. No. 3,616,262 to Coady et al. discloses a conveying apparatus for eggs that includes a candling station and an inoculation station. At the candling station, light is projected through the eggs and assessed by a human operator, who marks any eggs considered non-viable. Non-viable eggs are manually removed before the eggs are conveyed to the inoculating station.
Poultry eggs (hereinafter “eggs”) are typically inoculated on or about the eighteenth day of incubation. At such time, an egg may be one of several commonly recognized types. An egg may be a “live” egg, meaning that it has a viable embryo.
FIG. 1A
illustrates a live egg
1
at day one of incubation.
FIG. 1B
illustrates a live egg
1
at day twelve of incubation. The egg
1
has a somewhat narrow end in the vicinity represented at
1
a
as well as an oppositely disposed broadened end portion in the vicinity shown at
1
b
. In
FIG. 1A
, an embryo
2
is represented atop the yolk
3
. The egg
1
contains an air cell
4
adjacent the broadened end
1
b
. As illustrated in
FIG. 1B
, the wings
5
, legs
6
, and beak
7
of a baby chick have developed.
An egg may be a “clear” or “infertile” egg, meaning that it does not have an embryo. More particularly, a “clear” egg is an infertile egg that has not rotted. An egg may be an “early dead” egg, meaning that it has an embryo which died at about one to five days old. An egg may be a “mid-dead” egg, meaning that it has an embryo which died at about five to fifteen days old. An egg may be a “late-dead” egg, meaning that it has an embryo which died at about fifteen to eighteen days old.
An egg may be a “rotted” egg, meaning that the egg includes a rotted infertile yolk (for example, as a result of a crack in the egg's shell) or, alternatively, a rotted, dead embryo. While an “early dead”, “mid-dead” or “late-dead egg” may be a rotted egg, those terms as used herein refer to such eggs which have not rotted. Clear, early-dead, mid-dead, late-dead, and rotted eggs may also be categorized as “non-live” eggs because they do not include a living embryo.
An egg may be an “empty” egg, meaning that a substantial portion of the egg contents are missing, for example, where the egg shell has cracked and the egg material has leaked from the egg. Additionally, from the perspective of many egg detecting and identifying devices, an egg flat may be missing an egg at a particular location, in which case, this location may be termed a “missing” egg. An egg may be placed in an egg flat such that it is an “upside-down” or “inverted” egg, meaning that the egg has been placed in the flat such that the air cell thereof is mislocated, typically with the blunt end down.
Typically, eggs are held in flats on racks in carts for incubation in relatively large incubators. At a selected time, typically on the eighteenth day of age, a cart of eggs is removed from the incubator for the purposes of, ideally, separating out unfit eggs (namely, dead eggs, rotted eggs, empties, and clear eggs), inoculating the live eggs and transferring the eggs from the setting flats to the hatching baskets. Certain practical aspects of the incubation, handling and measuring processes may substantially diminish the accuracy of the methods and apparatus for distinguishing between live and dead eggs using conventional techniques.
While it is disadvantageous to discard live eggs, it is also disadvantageous to retain certain non-live eggs. In particular, if rotted or dead eggs are retained and inoculated, the inoculating needle may be contaminated, risking infection of subsequent live, healthy eggs. Furthermore, a treatment substance is wasted if injected in a non-live egg.
Furthermore, in some instances, it
Chalker, II B. Alan
Hutchins James E.
Embrex Inc.
Font Frank G.
Myers Bigel & Sibley & Sajovec
Punnoose Roy M
LandOfFree
Methods and apparatus for non-invasively identifying... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatus for non-invasively identifying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for non-invasively identifying... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3057628