Methods and apparatus for mass spectrometry

Radiant energy – Ionic separation or analysis – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S281000, C250S287000

Reexamination Certificate

active

06586727

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to methods and apparatus for mass spectrometry.
Tandem mass spectrometry (MS/MS) is the name given to the method of mass spectrometry wherein parent ions generated from a sample are selected by a first mass filter/analyser and are then passed to a collision cell wherein they are fragmented by collisions with neutral gas molecules to yield daughter (or “product”) ions. The daughter ions are then mass analysed by a second mass filter/analyser, and the resulting daughter ion spectra can be used to determine the structure of the parent (or “precursor”) ion. Tandem mass spectrometry is particularly useful for the analysis of complex mixtures such as biomolecules since it avoids the need for chemical clean-up prior to mass spectral analysis.
A particular form of tandem mass spectrometry referred to as parent ion scanning is known, wherein in a first step the second mass filter/analyser is arranged to act as a mass filter so that it will only transmit and detect daughter ions having a specific mass-to-charge ratio. The specific mass-to-charge ratio is set so as to correspond with the mass-to-charge ratio of daughter ions which are known to be characteristic products which result from the fragmentation of a particular parent ion or type of parent ion. The first mass filter/analyser upstream of the collision cell is then scanned whilst the second mass filter/analyser remains fixed to monitor for the presence of daughter ions having the specific mass-to-charge ratio. The parent ion mass-to-charge ratios which yield the characteristic daughter ions can then be determined. As a second step, a complete daughter ion spectrum for each of the parent ion mass-to-charge ratios which produce characteristic daughter ions may then be obtained by operating the first mass filter/analyser so that it selects parent ions having a particular mass-to-charge ratio, and scanning the second mass filter/analyser to record the resulting full daughter ion spectrum. This can then be repeated for the other parent ions of interest. Parent ion scanning is useful when it is not possible to identify parent ions in a direct mass spectrum due to the presence of chemical noise, which is frequently encountered, for example, in the electrospray mass spectra of biomolecules.
Triple quadrupole mass spectrometers having a first quadrupole mass filter/analyser, a quadrupole collision cell into which a collision gas is introduced, and a second quadrupole mass filter/analyser are well known. Another type of mass spectrometer (a hybrid quadrupole-time of flight mass spectrometer) is known wherein the second quadrupole mass filter/analyser is replaced by an orthogonal time of flight mass analyser.
As will be shown below, both types of mass spectrometers when used to perform conventional methods of parent ion scanning and subsequently obtaining a daughter ion spectrum of a candidate parent ion suffer from low duty cycles which render them unsuitable for use in applications which require a higher duty cycle i.e. when used in on-line chromatography applications.
Quadrupoles have a duty cycle of approximately 100% when being used as a mass filter, but their duty cycle drops to around 0.1% when then are used in a scanning mode as a mass analyser, for example, to mass analyse a mass range of 500 mass units with peaks one mass unit wide at their base.
Orthogonal acceleration time of flight analysers typically have a duty cycle within the range 1-20% depending upon the relative m/z values of the different ions in the spectrum. However, the duty cycle remains the same irrespective of whether the time of flight analyser is being used as a mass filter to transmit ions having a particular mass to charge ratio, or whether the time of flight analyser is being used to record a full mass spectrum. This is due to the nature of operation of time of flight analysers. When used to acquire and record a daugher ion spectrum the duty cycle of a time of flight analyser is typically around 5%.
To a first approximation the conventional duty cycle when seeking to discover candidate parent ions using a triple quadrupole mass spectrometer is approximately 0.1% (the first quadrupole mass filter/analyser is scanned with a duty cycle of 0.1% and the second quadrupole mass filter/analyser acts as a mass filter with a duty cycle of 100%). The duty cycle when then obtaining a daughter ion spectrum for a particular candidate parent ion is also approximately 0.1% (the first quadrupole mass filter/analyser acts as a mass filter with a duty cycle of 100%, and the second quadrupole mass filter/analyser is scanned with a duty cycle of approximately 0.1%). The resultant duty cycle therefore of discovering a number of candidate parent ions and producing a daughter spectrum of one of the candidate parent ions is approximately 0.1%/2 (due to a two stage process with each stage having a duty cycle of 0.1%)=0.05%.
The duty cycle of a quadrupole-time of flight mass spectrometer for discovering candidate parent ions is approximately 0.005% (the quadrupole is scanned with a duty cycle of approximately 0.1% and the time of flight analyser acts a mass filter with a duty cycle of approximately 5%). Once candidate parent ions have been discovered, a daughter ion spectrum of a candidate parent ion can be obtained with an duty cycle of 5% (the quadrupole acts as a mass filter with a duty cycle of approximately 100% and the time of flight analyser is scanned with a duty cycle of 5%). The resultant duty cycle therefore of discovering a number of candidate parent ions and producing a daughter spectrum of one of the candidate parent ions is approximately 0.005% (since 0.005%<<5%).
As can be seen, a triple quadrupole has approximately an order higher duty cycle than a quadrupole-time of flight mass spectrometer for performing conventional methods of parent ion scanning and obtaining confirmatory daughter ion spectra of discovered candidate parent ions. However, such duty cycles are not high enough to be used practically and efficiently for analysing real time data which is required when the source of ions is the eluent from a chromatography device.
Electrospray and laser desorption techniques have made it possible to generate molecular ions having very high molecular weights, and time of flight mass analysers are advantageous for the analysis of such large mass biomolecules by virtue of their high efficiency at recording a full mass spectrum. They also have a high resolution and mass accuracy.
Other forms of mass analysers such as quadrupole ion traps are similar in some ways to time of flight analysers, in that like time of flight analysers, they can not provide a continuous output and hence have a low efficiency if used as a mass filter to continuously transmit ions which is an important feature of the conventional methods of parent ion scanning. Both time of flight mass analysers and quadrupole ion traps may be termed “discontinuous output mass analysers”.
It is therefore desired to provide improved methods and apparatus for mass spectrometry, and according to a preferred embodiment to provide improved methods and apparatus which can identify candidate parent ions faster than conventional methods which would be suitable for use in chromatography applications on a real time basis.
SUMMARY OF THE INVENTION
According to a first embodiment and first aspect of the present invention, the first step of discovering candidate parent ions can be performed with a duty cycle of 2.5% (the quadrupole mass filter has a duty cycle of 100% and the time of flight analyser has a duty cycle of 5%, but two experimental runs need to be performed, one with the collision cell operated in a high fragmentation mode and the other with the collision cell operated in a low fragmentation mode, thereby halving the resultant duty cycle from 5% to 2.5%). The second step of confirming the identity of a particular candidate parent ion by performing a full daughter spectrum of the candidate parent ion can be performed with a duty cycle of 5% (the qua

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for mass spectrometry does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for mass spectrometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for mass spectrometry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3097151

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.