Methods and apparatus for fluorescence and reflectance...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S407000

Reexamination Certificate

active

06826424

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to electromagnetic radiation measuring devices, and more particularly to methods and apparatus for facilitating contemporaneous measurements of electromagnetic radiation with multiple measuring devices, for producing illuminating radiation for fluorescence and reflectance imaging, for performing both fluorescence and reflectance imaging using the same detectors in an imaging device, for producing a high diagnostic sensitivity image while achieving high diagnostic specificity with spectroscopy, for detecting tissue oxygenation, and for producing a fluorescence image of tissue.
BACKGROUND OF THE INVENTION
Many applications involve taking more than one type of measurement of electromagnetic radiation. For example, some medical imaging applications involve insertion of an endoscope into a cavity or incision in a subject such as a human patient. A flexible endoscope, for example, may include an optics channel through which a first optical fiber bundle conveys illumination light for illuminating internal tissues of the patient, and through which a second, coherent optical fiber bundle conveys light reflected or fluorescently emitted by the internal tissues back up through the endoscope to a measuring device such as a charge-coupled device (CCD) camera. A resulting image of the internal tissues produced by the camera may then be displayed on a monitor for visual inspection by a surgeon or physician, who may be able to identify suspected abnormal or diseased tissue from the displayed image.
Once suspected abnormal tissues have been identified by such visual inspection, it is then desirable to perform additional analysis on the tissue to confirm with greater specificity or accuracy whether it is in fact diseased. For this purpose, spectroscopy is sometimes performed. One existing spectroscopic analysis method involves the insertion of an optical fiber probe through a biopsy channel of the endoscope, which is normally used for insertion through the endoscope of medical tools such as those used for tissue sampling or therapeutic interventions, for example. The presence of this optical fiber probe in the biopsy channel may make it difficult or impossible to insert other tools into the biopsy channel, rendering the biopsy channel unsuitable for its intended purpose. In addition, this procedure may pose inconvenience for the surgeon or physician, who may have to remove medical tools from the biopsy channel in order to insert the optical fiber probe, then remove the probe in order to reinsert the tools when the spectral measurement is completed. Moreover, when the optical fiber probe is inserted through the biopsy channel, the probe typically comes into physical contact with the tissue in order to perform a measurement. Such contact tends to press blood away from the tissue to varying degrees, depending on the amount of pressure applied, which may result in different observed spectra, thereby introducing a source of measurement error.
One existing endoscopic system employs a beam splitter for directing a percentage of radiation received from the tissue for receipt by a spectroscopy device, while allowing the remainder of such radiation to pass through the beam splitter for receipt by a camera. However, it will be appreciated that beam splitters of this nature reduce the intensity of light received across the entire area of the camera. Generally, only a relatively low amount of light from the analyzed tissues enters the endoscope, due to the small circumference of the endoscope, the limited ability to increase the intensity of the illuminating light without causing thermal damage or photobleaching in the tissue, and due to the relatively low intensity of light fluorescently emitted or reflected by the tissue. Accordingly, the CCD camera is already “light hungry”. The use of such beam splitters aggravates this problem, resulting in an even darker CCD image, which may necessitate the use of expensive signal amplification devices.
Alternatively, in another existing endoscopic system, a mirror is employed for a somewhat different purpose. The mirror is inserted into the optical path of the light beam from the endoscope so as to reflect the entire beam to a first camera for white light reflectance imaging, and is removed from the optical path so as to allow the entire beam to be received at a second camera for fluorescence imaging. However, this method does not allow for simultaneous measurements by the first and second cameras, which increases the chance that the endoscope or the subject might move between alternate images. This difficulty may not be serious for use in switching between white light reflectance and fluorescence images, however, this method would not be desirable for combined imaging and spectroscopy measurements, as it fails to ensure that the spectroscopy measurement is of the same tissue region that appeared to be of interest in the camera image, which may lead to unreliable spectroscopy results.
Accordingly, there is a need for a more convenient way of performing contemporaneous measurements with multiple measuring devices, such as an imaging device and a spectroscopy device for example, without significantly compromising endoscopic imaging quality or reliability of the spectroscopy results.
Additionally, existing endoscopic systems have failed to utilize the full potential of combined imaging and spectroscopy. In particular, for systems involving multi-spectral-channel imaging devices, such as white light reflectance RGB color CCD cameras and dual channel fluorescence imaging cameras for example, the ability to increase the diagnostic sensitivity of such devices by adjusting the gain relationships between different imaging channels is constrained by conventional wisdom, which indicates that any increase in the diagnostic sensitivity of the imaging device by gain relationship adjustment results in a corresponding decrease in specificity of diagnosis. In other words, increasing the diagnostic sensitivity of a dual channel fluorescence imaging device, for example, will produce more “false positive” diagnoses, as a result of tissues that appear from the image alone to be diseased or malignant when in fact they are benign or even normal. The desire to avoid such erroneous diagnoses therefore places limitations on the ability to adjust the diagnostic sensitivity of the imaging device.
Thus, there is a need for a way to produce images of higher diagnostic sensitivity without unduly reducing the specificity or accuracy of diagnoses.
In addition, an endoscopic imaging system preferably involves both white light reflectance color imaging to produce a normal view in which the appearance of an internal organ is familiar to the surgeon or physician, and fluorescence imaging for better diagnostic accuracy. For white light reflectance imaging, an image of the tissue of interest is taken while the tissue is being irradiated with white light. For fluorescence imaging, the tissue is irradiated with excitation light, typically short wavelength light, which may range from blue to ultraviolet depending on the application. In order to avoid the necessity of injecting the tissue with drugs containing fluorescent substances, the trend has been toward autofluorescence imaging. When tissues are irradiated with short wavelength excitation radiation, the tissues tend to emit fluorescence light which typically ranges from 450 to 750 nm and peaks at green wavelengths from 510 to 530 nm, for example. It has been found that abnormal tissues such as diseased or cancerous tissues tend to emit significantly lower intensities of such autofluorescence light at green wavelengths than normal tissues. Abnormal or suspicious tissues therefore tend to appear darker in a corresponding fluorescence image of the tissues at green wavelengths. Thus, different illumination spectra are required for reflectance and fluorescence imaging, namely, a white light or other illumination spectrum for reflectance imaging and at least a short-wavelength excitation spectrum for fluor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for fluorescence and reflectance... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for fluorescence and reflectance..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for fluorescence and reflectance... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3361116

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.