Methods and apparatus for diagnosing and remediating reading...

Surgery – Diagnostic testing – Eye or testing by visual stimulus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C351S223000, C351S239000

Reexamination Certificate

active

06213956

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methodology for diagnosing and treating reading disorders such as dyslexia. More particularly, the present invention relates to methods and apparatus for measuring contrast sensitivity for motion discrimination. The present invention also relates to methods and apparatus for improving contrast sensitivity for motion discrimination. The inventor of the present invention has determined that by improving contrast sensitivity for motion discrimination by practicing the present invention, children who are dyslexic, as well as children with normal reading ability, may improve their reading ability.
2. Description of the Related Art
When a pattern of light falls on the retina, the image is processed within the retina to some extent Ganglion cells of the retina send signals out of the eye to a relay nucleus in the thalamus of the brain. Cells of the thalamus in turn send signals to the visual cortex for further processing. There are two major types of retinal ganglion cells which respectively contact two divisions of cells in the relay nucleus of the thalamus: the parvocellular division and the magnocellular division. Cells in the parvocellular division have small receptive fields and are useful for visual tasks requiring a high degree of acuity. Cells in the magnocellular division, which are about ten-times less numerous than those of the parvocellular division, have large receptive fields and are useful for visual tasks requiring a high degree of movement detection. Cells of the magnocellular division have coarse acuity and high contrast sensitivity.
In view of the above, the vision system of a human may be divided into two visual streams. The first stream is a magnocellular stream which detects the movement of an object. This movement stream has a high sensitivity to low contrast (for example, below 10%), to low luminance, to movement, and has low resolution. The second steam is a parvocellular stream which detects the color, shape, and texture of patterns. This second or acuity steam has low contrast sensitivity and high resolution. The acuity stream is most sensitive to contrasts above about 10%.
The parvocellular and magnocellular cells, either alone or in combination, provide the information used by many different visual cortical pathways (or “streams”) which are specialized at performing different perceptual tasks. One such specialized pathway is a visual cortical area called Medial Temporal, or “MT,” which is central in the analysis of direction of motion. Most of the signals that drive neurons in area MT derive from neurons in layer
4
b
of the primary visual cortex, which neurons in turn are primarily supplied by input from the magnocellular cells. (In primates, the primary visual cortex is the only cortical area that receives signals from the retina via neurons in the thalamic relay nucleus.) Direction selectivity is a fundamental characteristic of the magnocellular neurons and is mediated by cells in both layer
4
b
in the striate cortex and in the MT cortex.
Certain aspects of magnocellular networks, such as direction discrimination and detecting brief patterns, are still developing in all 5 to 9 year old children, when compared to normal adults. Moreover, the immature magnocellular and inhibitory networks of dyslexics confirm the increasing psychophysical, physiological, and anatomical evidence that dyslexics have anomalies in their magnocellular networks, demonstrated by (1) higher contrast thresholds to detect brief patterns, (2) an impaired ability to discriminate both the direction and the velocity of moving patterns, and (3) unstable binocular control and depth localization when compared to age-matched normals. There is substantial evidence that dyslexics have a disordered posterior parietal cortex and corpus callosum, having immature inhibitory networks that severely limit a child's ability to both discriminate direction of movement and read.
Reading is the most important skill that is learned in the first and second grades. Yet there are no standardized ways to evaluate or to teach reading. A natural assumption is that reading relies on the higher resolution pattern system evaluated by measuring an observer's visual acuity and color discrimination ability. It is generally believed that movement discrimination is involved in reading solely as a means of directing eye movements, coordinating each saccade so that letter recognition can be conveyed by the portion of the vision system which has a higher resolution. It is intriguing that differences between children with reading problems (e.g., those who are dyslexic) and children with normal reading ability were revealed only by tests of the cortical movement system. On the other hand, tests of the pattern system, such as visual acuity using long duration patterns, revealed no differences between children with normal reading and children with reading problems. However, a recent study questions whether dyslexic children show a temporal processing deficit, and another study concludes that the contrast sensitivity functions (CSFs) of dyslexic children are unrelated to their reading ability.
A natural assumption in the art is that reading relies on the high-resolution acuity system. The acuity system may be evaluated by measuring the visual acuity of a subject, which is measured by an index of 20/20, 20/40, and so on as known in the art. Conventional wisdom in the art teaches that dyslexia, which may be defined as a difficulty in reading in a child of normal intelligence and an adult-level acuity (i.e., 20/20), is explained as a difficulty in decoding words on a page that are readily seen.
One approach used to remediate dyslexia involves training the child to engage in novel, small-scale hand-eye coordination tasks like drawing, painting, and modeling, coupled with word identification, for 5 hours per week over 8 months. This approach improved reading at least one grade level. The mechanism for this improvement is unknown.
BRIEF SUMMARY OF THE INVENTION
In view of the foregoing drawbacks of current techniques in the art, one of the objectives of the present invention is to provide methods and apparatus for diagnosing and remediating reading disorders by respectively measuring and improving contrast sensitivity for motion discrimination of the subject. Dyslexic children who have practiced the methods of the present invention have increased their reading rates up to 9 times on average. There is also a marked increase in reading rates in children with previously determined normal ability.
According to one aspect of the invention, a background is displayed on a monitor with a contrast and a spatial frequency. A test window is superimposed over the background and includes a test pattern with a contrast and a spatial frequency. The contrasts and the spatial frequencies are within respective ranges which stimulate the visual cortical movement system of the subject. The test pattern is then moved within the test window. The subject provides a signal indicative of the direction the subject believes the test pattern moved. In response to this signal, the contrast of the test pattern, the spatial frequency of the background, or the spatial frequency of the test pattern is modified, either by increasing or decreasing its respective value.
This process is then repeated a number of times, cycling through predetermined combinations of test patterns and backgrounds. Contrast sensitivity may be measured to determine whether a child is dyslexic. Repeated stimulation by the methods and apparatus of the invention improves contrast sensitivity, thereby remediating dyslexia and improving reading ability.
Other objects, features, and advantages of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description taken in conjunction with the accompanying drawings.


REFERENCES:
patent: 3842822 (1974-10-01), Levinson et al.
patent: 4493539 (1985-01-01), Cannon, Jr.
patent: 4526452 (19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for diagnosing and remediating reading... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for diagnosing and remediating reading..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for diagnosing and remediating reading... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2532230

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.