Methods and apparatus for determining the location of a...

Geometrical instruments – Gauge – Center – point – distance between centers – or centerline location

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S001810, C073S001790, C073S865900, C073S866000, C702S087000, C702S150000, C702S158000, C702S094000, C702S097000, C702S166000, C356S615000

Reexamination Certificate

active

06434847

ABSTRACT:

TECHNICAL FIELD
The present invention generally relates to measurement of the distance of a shaft from the bottom of a vessel and the amount by which the shaft is offset from the center of the vessel. More particularly, the present invention relates to the precise measurement of shaft height and shaft offset in vessels employed in dissolution testing systems.
BACKGROUND ART
In the pharmaceutical industry, dissolution testing and analysis is required to be performed on samples taken from batches of tablets or capsules manufactured by pharmaceutical companies in order to assess efficacy and other properties. Dissolution analysis by automated means has become popular for increasing throughput and improving accuracy, precision, reliability, and reproducibility. Automation also relieves the tedium of manually performing a variety of requisite procedures, including: handling and delivering dosage units such as capsules and tablets; monitoring dissolution system parameters; manipulating the shafts carrying the agitation paddles or sample baskets; recording, displaying and printing accumulated data and test results; and cleaning and filtering the vessels employed in such procedures.
Despite the benefits accruing from automation, validation of the procedures employed in dissolution testing and analysis remains a critical consideration. A typical dissolution test requires, among other things, that a rotatable shaft equipped with a paddle or basket be properly positioned in the center of, and properly located a specified distance from the bottom of, a dissolution test vessel prior to conducting the test. The USP has promulgated guidelines for the pharmaceutical industry which are enforced by the FDA. Under USP 24, General Chapters, Dissolution (711), the shaft must be positioned such that its centerline is not more than 2 mm at any point from the vertical axis of the vessel, and such that the paddle or basket (typically mounted to the lower end of the shaft) be positioned at 25 mm ±2 mm from the bottom of the vessel.
Various hand-held devices have been utilized to carry out the measurements required to determine whether a shaft is positioned in a dissolution test vessel in compliance with the above-cited guidelines. Rulers, machinist calipers and micrometers, and pass/fail fixtures typify such devices and are known to persons skilled in the art. It is readily apparent to such skilled persons that operation of these devices requires a great deal of manual handling, with critical specifications largely determined by sight and feel. Conventional shaft measurement devices therefore engender an unacceptably high risk of error. There accordingly exists a long felt need for improved apparatus and methods for determining the position of a shaft installed in the vessel of a dissolution testing station.
DISCLOSURE OF THE INVENTION
In accordance with the present invention, an apparatus is mountable to a shaft disposed within a vessel and is adapted for measuring the magnitude by which the centerline of the shaft is offset from the central axis of the vessel. The apparatus comprises a housing and a plunger slidably mounted to the housing. The plunger has an outer section extending radially outwardly beyond a wall of the housing, and means such as a spring for biasing the plunger radially outwardly. A transducer is operatively mounted to the housing. The transducer is adapted to encode positions of the plunger and to produce an electrical signal proportional to a change in position resulting from displacement of the plunger. Means such as data lines are provided for transferring the signal to means such as a microprocessor for interpreting the signal.
In another embodiment according to the present invention, an apparatus is mountable to a shaft having a paddle or basket disposed within a vessel. The vessel has a central axis and a hemispherical end region. The apparatus is adapted for measuring the distance from a distal surface of the paddle or basket to a lowermost point on the inside surface of the hemispherical end region. The apparatus comprises a housing and a plunger slidably mounted to the housing. The plunger has an outer section extending outwardly beyond a wall of the housing, and means such as a spring for biasing the plunger outwardly. An end portion extends transversely from the plunger beneath the housing and is substantially centered about a central portion of the housing. A transducer is operatively mounted to the housing. The transducer is adapted to encode positions of the plunger and to produce an electrical signal proportional to a change in position resulting from displacement of the plunger. Means such as data lines are provided for transferring the signal to means such as a microprocessor for interpreting the signal.
In another embodiment according to the present invention, a system is provided for determining the location of a rotatable shaft in relation to a vessel mounted to a rack of a dissolution testing station. The shaft has a first end mounted to the testing station above the vessel, a second end disposed within the vessel and an operative component secured to the second end. The system comprises a housing including means such as a resilient clip and groove for removably mounting the housing to the shaft, and a plunger slidably mounted to the housing. The plunger has an outer section extending radially outwardly beyond a wall of the housing and extendable to an inside lateral surface of the vessel, and has means such as a spring for biasing the plunger radially outwardly. A transducer is operatively mounted to the housing. The transducer is adapted to encode positions of the plunger, and to produce an electrical signal proportional to a distance from a reference position to an extended position at which the plunger is in contact with the inside lateral surface of the vessel. Means such as data lines are provided for transferring the signal to means such as a microprocessor for interpreting the signal.
In another embodiment according to the present invention, a system is provided for determining the location of a rotatable shaft in relation to a vessel. The vessel has a central axis and a hemispherical end region, and is mounted to a rack of a dissolution testing station. The shaft has a first end mounted to the testing station above the vessel, a second end disposed within the vessel and an operative component such as a paddle or basket secured to the second end. The system comprises a spherical object removably disposed in a lowermost point on an inside surface of the hemispherical end region of the vessel. A housing includes means such as a resilient clip or groove for removably mounting the housing to the shaft. A plunger is slidably mounted to the housing. The plunger has an outer section extending beyond a wall of the housing and extendable to the spherical object, and has means such as a spring for biasing the plunger outwardly. An end portion has an upper surface and a lower surface, and extends transversely from the plunger and between the operative component and the spherical object.
A transducer is operatively mounted to the housing. The transducer is adapted to encode positions of the plunger, and to produce an electrical signal proportional to a distance from a reference position at which the top surface of the end portion of the plunger is biased against the operative component to an extended position at which the lower surface is in contact with the spherical object. Means such as data lines are provided for transferring the signal to means such as a microprocessor for interpreting the signal.
In another object according to the present invention, a system is provided for determining the location of a shaft in relation to a vessel in which the shaft is disposed. The vessel has a central axis and a hemispherical end region. The system comprises a shaft offset measurement device which includes a first housing and a first plunger slidably mounted to the first housing. The first plunger has an outer section extending radially outwardly beyond a wall of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for determining the location of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for determining the location of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for determining the location of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2940357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.