Methods and apparatus for data communications on packet...

Multiplex communications – Network configuration determination – Using a particular learning algorithm or technique

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S352000, C370S401000, C370S516000, C375S222000

Reexamination Certificate

active

06788651

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to data communications on Packet Networks. More particularly, the present invention relates to the communication of data through peripheral devices, such as fax machines or modems, on Packet Networks; such as Voice Over IP networks.
BACKGROUND OF THE INVENTION
The current trend of using Packet Networks (PN) to transport data traditionally carried over circuit switched networks such as the Public Switched Telephone Network (PSTN) creates a need to support the installed-base of terminals attached to the PSTN.
FIG. 2
depicts a traditional PSTN configuration as well as the interfacing to a PN substitute network.
The different nature of these two types of networks translates into different characteristics such as bandwidth, delay and loss of information. The differences in characteristics between these networks can affect the terminals that have been designed with PSTN characteristics in mind, if and when the terminals need to communicate over a PN
204
. For example, Packet Network connections differ from the traditional telephone networks for which modems, such as modems
218
and
224
, were originally designed. Accordingly, many terminals are delay sensitive, and their interaction has been designed on the delay characteristics of the network in use at the time of their inception, typically, the PSTN.
Further, many of the mechanisms designed to compensate for these differences are designed to make human conversation comfortable. For example, in Voice over Internet Protocol (VoIP) network connections, the VoIP processing is typically conducted in the gateways, for example, IP gateways
210
and
212
, located at the edge of the IP network. These VoIP processing algorithms are typically optimized as much as possible for handling voice traffic. However, if this optimization is done without any consideration for modems
218
and
224
within user endpoints
230
and
240
, any corresponding modem connections may be greatly degraded or may not function over such a VoIP connection, i.e., the voice processing mechanisms will not facilitate reliable modem communications. Further VoIP connections can tend to create jitter that can destroy modem training and end-to-end connectivity.
In a packet network, individual data packets typically traverse the network with different propagation delays, depending on the routes the packets take within the network and the amount of queued data within the network. A VoIP terminating point in gateways
210
and
212
will typically provide a continuous signal by generally adding a large enough throughput delay to absorb the statistical spread in propagation delay. One option for voice traffic is to provide an adaptive jitter buffer that attempts to minimize the throughput delay by adaptively adjusting to changes in the delay statistics over time as the volume of network traffic increases or decreases. However, this adaptive jitter buffer algorithm can tend to degrade modem performance, particularly in echo canceling modulations like V.90 or V.34. For example, as the jitter buffer adapts, changes in the round-trip delay of the associated echo would be observed. Accordingly, the adaptive algorithms in the echo canceller attempt to track these changes in delay. However, for typical echo canceller adaptation rates used by most modems, it is very unlikely that an echo canceller could adapt quickly enough to track any changes in round-trip delay. As such, a change in the round trip delay as small as 2 or 3 ms is likely to cause a modem, such as a V.34 or V.90 modem, to disconnect over a large proportion of line conditions.
In addition, most modems historically have been designed to tolerate up to 1.2 seconds of round trip delay, such as may have been required for the worst case of two satellite hops, i.e., two satellites encountered within the communication path. However, since current technology has rendered unlikely the possibility of ever seeing two satellite hops, as well as with underwater cable systems having a much lower delay becoming more common, modern modem designs are quite likely to have less round trip delay capability than the old 1.2 second design standards. Accordingly, present IP gateways, particularly those with adaptive jitter buffers optimized for voice communications, cannot resolve alone the problems with present modem communications through VoIP networks.
In addition to the network impairment of throughput delay, another impairment consists of packet loss. When packets are lost during a communication session, attempts can be made by the network to minimize the duration of time that the modem receives an invalid signal, such that the modem simply receives a burst of errors during the period of missing data but continues normally thereafter once the data signal resumes. Most modern modems can be somewhat tolerant to impulsive noise, sudden signal hits or drop-outs. Accordingly, if the duration of time that the modem sees invalid data during a lost packet is small enough, the algorithms that give tolerance to, for example, impulsive noise, sudden signal hits, or drop outs, may keep the modem in a stable condition. However, in the event that the period for the loss of data lasts too long, the adaptive algorithms can be thrown off track, and thus, a retraining of the modem is needed.
Thus, a need exist for new methods for providing reliable data communications through packet networks for voiceband communications other than analog voice communications, such as, for example, fax or modem communications. Further, a need exist for a method to improve the throughput delay and packet loss impairments present over IP networks. Additionally, a need exist to facilitate the detection of different types of voiceband traffic, for example, detecting voice versus different modem/fax modulations, and for disabling network voice echo cancellers, adaptive jitter buffers and other such mechanisms implemented in the VoIP algorithms that would degrade modem performance.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, typical VoIP algorithm functions and network characteristics that may degrade modem performance are identified, and a determination is made whether these functions or characteristics may be modified with suitable VoIP algorithms, primarily in the IP gateways to improve conditions for a modem connection.
The disclosed techniques for facilitating data communications may be employed through the use of modems over a packet network. In accordance with an exemplary embodiment of the present invention, the detection of voice signals versus modem signals in a data communication system is conducted, a determination is made whether existing VoIP algorithm functions or characteristics may be appropriate for modem communications, and then the VoIP algorithms may be modified to improve operating conditions for a modem connection. Additionally, the existing VoIP algorithm functions and network characteristics within the data communication system that may degrade modem performance can be identified prior to the determination of whether the VoIP algorithm functions are appropriate for modem communications.
In accordance with one aspect of the present invention, the detection between voice signals and modem signals can also comprise the determination as to a particular type of modems signal. Further, a variety of signals can be utilized to determine whether voice or modem communications are being conducted. Still further, control of the adaptive jitter buffer to remove or reduce adaptation during detection of modem signals can be provided.
In accordance with another aspect, the modification of the VoIP algorithms may occur within gateway modems suitably interfaced to the packet network, or can occur within originating and answering modems. Moreover, the modifications can be selectively configurable based on the type of modem signal detected. In accordance with an exemplary embodiment, the VoIP algorithms, as modified for modem communications, select their fixed buffer delay bef

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for data communications on packet... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for data communications on packet..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for data communications on packet... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3206186

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.