Methods and apparatus for control of frequency hopping in an...

Telecommunications – Radiotelephone system – Including private cordless extension system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S426100, C375S132000

Reexamination Certificate

active

06519467

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to improvements to cordless telephony. More particularly, the invention relates to advantageous apparatus and methods for providing a frequency hopping cordless telephone.
BACKGROUND OF THE INVENTION
A typical cordless telephone system includes a base station and a handset. The base station is typically connected by wire to a central office. The handset communicates with the base station by cordless means, such as through radio frequency signals, without a direct physical connection to the base station. Cordless telephones allow considerable freedom and mobility to the user, allowing the user to move about while engaged in a call, and to conduct a call at a considerable distance from the base station. Presently, two preferred cordless systems exist, digital and analog. Analog systems provide the advantages of simplicity, low cost, and high sound quality, but are vulnerable to in-band interference or jamming. Moreover, analog systems may interfere with other telephones. For this reason, analog systems are restricted in power, resulting in a reduced range.
Digital systems exist, which have both advantages and disadvantages with respect to analog systems. Digital systems provide a digital processing gain, reducing susceptibility to inband interference, with the resistance to interference increasing with processing gain. Digital systems are less likely to interfere with other telephone systems, and are permitted greater transmit power than are analog systems. The combination of greater transmit power and digital processing gain provides digital systems with a significantly greater range than is possessed by analog systems. Disadvantages of digital systems are a much higher cost due to the need to have powerful processors to perform voice coding and decoding, as well as digital signal processing (DSP) to achieve processing gain. Many parts of a digital system transmitter and receiver, such as a modulator and demodulator, are subject to more stringent requirements than are the corresponding parts of analog systems, and are therefore more complicated. Moreover, digital voice coding, interleaving, and spreading take time to perform, delaying signal transmission. Delay is especially prevalent in systems employing time domain duplexing, in which transmitter and receiver work in turns, half time each. This delay is added to the delay caused by digital processing, and may create a problem called echo. Echo in digital systems produces a significant degradation of sound quality, with the amount and nature of the degradation being influenced by the amount of delay and the spectrum content of the reflection. Echo cancellation in digital systems of the prior art represents a considerable challenge and increases the cost of the system.
An important aspect of transmission in cordless telephone systems is spreading. Systems of the prior art commonly use one of two techniques. These techniques are direct sequence and frequency hopping. In direct sequence systems the information signal is multiplied by a pseudorandom sequence of bits, widening the spectrum of the resulting signal. The received signal is multiplied with the same sequence once again to despread it. Many well-known techniques exist for performing spreading and despreading.
In frequency hopping systems, information bits are grouped into frames. Each frame is transmitted on a different carrier frequency. Over a period of time, therefore, the energy of the signal is spread throughout the entire bandwidth. Frequency hopping systems are appropriate for a time division duplexed system (“TDD”), since the transmitter and receiver of a TDD must be rapidly switched on and off. The transmitter and receiver of a TDD employing a frequency hopping system repeat an on-off cycle, with each repetition of the cycle employing a different frequency. A TDD employing frequency hopping is particularly vulnerable to echo.
It is possible to combine direct sequence and frequency hopping spreading techniques. A system using these combined techniques would have a large processing gain and a high interference immunity, but would be complex and expensive. Due to an extensive processing and hopping delay, it would also be susceptible to echo.
A need therefore exists in the art for a cordless telephone system with a low cost, high processing gain with resulting high interference immunity, and resistance to echo.
SUMMARY OF THE INVENTION
A cordless telephone according to the present invention includes a handset and a base station wherein frequency hopping is controlled in at least one of the handset and the base station by a signal received from the other of the handset and the base station. Preferably the base station and the handset each have a transmitter and a receiver operating simultaneously on different frequencies. The handset performs frequency hopping according to information contained in a signal received from the base station and the base station performs frequency-hopping according to information in a signal received from the handset. Preferably, the frequency-hopping information is transmitted in a single signal together with user information, such as a voice communication to be transmitted by the handset.
In a preferred embodiment of the invention, the handset transmits to the base station a modulated carrier signal comprising a digital portion and an analog portion. The base station receiver receives the signal and demodulates it to recover the digital portion and the analog portion. The analog portion is employed to provide user information, while the digital portion is employed to generate a hopping control signal used to control frequency hopping by the base station transmitter. The base station transmitter also employs the hopping control signal to produce a local oscillator signal used to control frequency conversion in the base station receiver. Similarly, the base station transmits to the handset a modulated carrier signal containing a digital portion and an analog portion. The handset recovers the digital portion and the analog portion and employs the analog portion to provide user information, while employing the digital portion to control frequency hopping in the handset transmitter and receiver. The handset and base station employ the digital portions of the signals to provide for frequency hopping without an interruption of communication.
A cordless telephone according to the present invention includes advantages of an analog cordless telephone, together with processing gain and spread spectrum capabilities, having resistance to echo and a cost significantly below that of prior-art digital techniques. The combination of analog modulation and digital data provides frequency hopping without an interruption of communication.
A more complete understanding of the present invention, as well as further features and advantages of the invention, will be apparent from the following Detailed Description and the accompanying drawings.


REFERENCES:
patent: 4383323 (1983-05-01), Timor
patent: 5142534 (1992-08-01), Simpson et al.
patent: 5528623 (1996-06-01), Foster, Jr.
patent: 5930719 (1999-07-01), Babitch et al.
patent: 6151352 (2000-11-01), Taki et al.
patent: 6278722 (2001-08-01), Evans

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for control of frequency hopping in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for control of frequency hopping in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for control of frequency hopping in an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3181663

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.