Methods and apparatus for context selection of block...

Pulse or digital communications – Bandwidth reduction or expansion – Television or motion video signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06680974

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to video and/or image compression and, more particularly, to methods and apparatus for context selection of block transform coefficients in a video and/or image compression system.
BACKGROUND OF THE INVENTION
Lossless and near-lossless image and video compression techniques have generated considerable interest in the video processing community in recent years. Examples of such known techniques have been extensively described in the image and video compression literature, for example: Draft of MPEG-2: Test Model 5, ISO/IEC JTC1/SC29/WG11, April 1993; Draft of ITU-T Recommendation H.263, ITU-T SG XV, December 1995; “Lossless and near-lossless coding of continuous tone still images” (JPEG-LS), ISO/IEC JTC1/SC 29/WG 1, July 1997; B. Haskell, A. Puri, and A. N. Netravali, “Digital video: An introduction to MPEG-2, ” Chapman and Hall, 1997; H. G. Musmann, P. Pirsch, and H. J. Gralleer, “Advances in picture coding,” Proc. IEEE, vol.73, no. 4, pp.523-548, April 1985; N. D. Memon and K. Sayood, “Lossless compression of video sequences,”
IEEE Trans. Communications
, vol. 44, no.10, pp. 1340-1345, October 1996; A. N. Netravali and B. G. Haskell, “Digital Pictures: Representation, Compression, and Standards,” 2
nd
Ed., Plenum Press, 1995; A. Said and W. A. Pearlman, “New, fast, and efficient image codec based on set partitioning in hierarchical trees,”
IEEE Trans. Circuit and Systems for Video Technology
, vol. 6, no. 3, pp.243-249, June 1996; M. J. Weinberger, J. J. Rissanen, and R. B. Arps, “Applications of universal context modeling to lossless compression of gray-scale images,” IEEE Trans. Image Processing, vol. 5, no. 4, pp.575-586, April 1996; X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans. Communications, vol. 45, no. 4, pp. 437-444, April 1997; and Z. Xiong, K. Ramchandran, and M. T. Orchard, “Space frequency quantization for wavelet image coding,” IEEE Trans. Image Processing, vol. 6, 1997.
These conventional techniques have been used in an attempt to generate high quality, perceptually distortion free compressed video and still images. One of the issues of interest in developing an image or video compression technique is the reduction of overhead data that must be sent by the encoder to the decoder for proper decoding of the coded bit stream. Approaches which have attempted to take this issue into consideration can be roughly classified into two categories: context-based predictive coding in the spatial domain and context-based coding in the wavelet domain. Examples of the spatial domain techniques are discussed in “Lossless and near-lossless coding of continuous tone still images” (JPEG-LS), ISO/IEC JTC1/SC 29/WG 1, July 1997; the Weinberger et al. article; and the Wu et al. article, as mentioned above. Examples of the wavelet domain techniques are discussed in the Memon et al. article; the Said et al. article; and the Xiong et al. article, as mentioned above.
While some of the aforementioned art techniques do not require sending overhead information pertaining to coding parameters employed at an encoder to a corresponding decoder, the existing techniques for accomplishing this have exhibited a variety of shortcomings, e.g., high complexity, high cost to implement/operate, etc. Thus, it would be highly advantageous to provide an improved compression technique for block transform coding which not only avoids the burden of transmitting coding parameter related information to a decoder but also eliminates, or at least substantially minimizes, the shortcomings of existing approaches.
SUMMARY OF THE INVENTION
The present invention provides methods and apparatus for context selection of an image or video sequence in the transform domain. The transform coefficients may be obtained using a particular block transform, e.g., Hadamard transform. With proper context selection, and pre-specified selection rules, an encoder according to the invention can change the coding parameters of each block-and/or coefficient that is currently being encoded, depending solely on the context of the surrounding blocks or transform coefficients, without having to specifically send these coding parameters to a corresponding decoder.
In one aspect of the invention, a method for use in a block transform-based coding system of processing (e.g., encoding and/or decoding) one or more block transform coefficients associated with at least one block of visual data (e.g., an image and/or video sequence) comprises the following steps. First, one or more previously reconstructed block transform coefficients associated with the visual data are identified. Then, a context selection value is computed for use in processing a block transform coefficient associated with the at least one block, the context selection value being based on the one or more previously reconstructed block transform coefficients.
The context selection value may be computed as a function of one or more values respectively associated with one or more previously reconstructed block transform coefficients in near proximity, with respect to a scanning order, to the block transform coefficient to be processed. Further, the context selection value may be computed as a function of a spatial frequency associated with the block transform coefficient. In particular, previously reconstructed coefficients with the same spatial frequency (context) value may determine the coding parameters that will be used to encode the coefficient. Still further, the context selection value may be computed as a function of both the one or more values respectively associated with the one or more previously reconstructed block transform coefficients in near scanning order proximity and the spatial frequency associated with the block transform coefficient.
Since selection of block transform coefficients at an encoder is accomplished according to the invention using only previously reconstructed samples, the encoder does not need to provide such coding parameter information to the corresponding decoder since the decoder can get the information using the same previously reconstructed samples used at the encoder. Advantageously, transmission bandwidth and/or storage capacity is saved.


REFERENCES:
patent: 5644361 (1997-07-01), Ran et al.
patent: 5914680 (1999-06-01), Murashita
patent: 6118903 (2000-09-01), Liu
patent: 6219457 (2001-04-01), Potu
patent: 6222881 (2001-04-01), Walker
patent: 6249609 (2001-06-01), Sunakawa et al.
patent: 6272180 (2001-08-01), Lei
patent: 2248021 (1997-09-01), None
patent: 2252081 (1999-04-01), None
patent: 2310341 (2000-12-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for context selection of block... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for context selection of block..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for context selection of block... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3199447

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.