Methods and apparatus for compensating computed tomographic...

X-ray or gamma ray systems or devices – Specific application – Computerized tomography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C378S004000

Reexamination Certificate

active

06535572

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to methods and apparatus for computed tomographic (CT) imaging and other scanning imaging systems, and more particularly, to methods and apparatus for decreasing image artifacts and for retaining spatial resolution in systems providing increased volume coverage with limited data acquisition hardware.
To reduce the total scan time required for multiple slices, a “helical” scan may be performed. To perform a “helical” scan, the patient is moved in a z-axis direction synchronously with the rotation of the gantry, while the data for the prescribed number of slices is acquired. Such a system generates a single helix from a fan beam helical scan.
In at least one known CT imaging system, the detector array is segmented into a plurality of rows of detector elements, each row extending in an x-direction and defining an x-y “slice” out of a volume. Such imaging systems can acquire and process a plurality of slices of projection data to construct a plurality of images. Each of the reconstructed images corresponds to a different slice though the volume. Such CT imaging systems are referred to as “multislice” systems. Multislice systems provide more data available for reconstructing an image. In one exemplary embodiment of a multislice imaging system, N rows, e.g., N slices, of projection data are acquired for each view angle.
At least one known CT imaging system utilizes a detector array and a “data acquisition system” (DAS) for collecting image data. The detector array includes detector elements that individually produce an analog intensity signal representing impinging x-ray energy. The analog signals are then converted by the DAS to digital signals, which are used to produce image data.
In many applications of CT imaging systems such as cardiac imaging, it is desirable to increase the volume of an object imaged during a gantry rotation. One method for increasing imaging volume is to increase z-axis detector coverage, for example, by increasing the number of detector rows. To accommodate a larger number of detector rows without substantially increasing the size and complexity of the DAS, adjacent groups of detector elements in a detector row can be ganged. “Ganging groups of detector elements” (also called “ganging detector channels”) refers to combining outputs of more than one detector cell adjacent one another in the x-direction. A detector having ganged detector elements requires less bandwidth than the same size detector array having separate detector outputs. Each ganged group of detector elements produces an output that requires only a communication path or channel through the DAS equivalent to that required by a single, unganged detector output. For example, a ganged group of detector elements produces data that can be sent via one multiplexed data slot position. Spare detector channels of the DAS can then be used to increase the number of detector rows from which data is acquired. When increased volume coverage is not needed, the channels and detector elements can be “unganged” or used individually. In this mode, the DAS accommodates the same amount of data, but processes fewer detector rows, so that less z-axis coverage is provided.
Ganging of adjacent detector elements in a detector row allows a hardware-limited imaging system to provide increased volume coverage. However, computer simulations of phantom scans has shown that ganging of detector elements in this manner results in a significant loss of spatial resolution and in increased aliasing artifact levels. Attempts to improve spatial resolution by boosting the image reconstruction kernel have resulted in worsened aliasing.
BRIEF SUMMARY OF THE INVENTION
There is therefore provided, in one embodiment of the present invention, a method for imaging an object with a scanning imaging system having a rotating gantry, a multislice detector array on the rotating gantry having parallel rows of detector elements, the parallel rows defining an x-direction, and an x-ray source on the rotating gantry configured to emit a fan-shaped x-ray beam in an x-y plane through an object to be imaged and towards the multislice detector array, the multislice detector array and the fan-shaped beam together defining an first iso-channel (or “unganged iso-channel”) of the multislice detector array when the scanning imaging system is utilized for scanning without ganging groups of detector elements. The method includes steps of ganging groups of adjacent detector elements in the x-direction; scanning an object with the scanning imaging system using the ganged groups of adjacent detector elements to acquire projection data; and reconstructing an image of the object utilizing the acquired projection data and an adjusted iso-channel of the multislice detector array different from the first iso-channel.
Another embodiment of the present invention provides a method for imaging an object with a computed tomography (CT) imaging system having a rotating gantry, a multislice detector array on the rotating gantry having parallel rows of detector elements, the parallel rows defining an x-direction, and an x-ray source on the rotating gantry configured to emit a fan-shaped x-ray beam in an x-y plane through an object to be imaged and towards the multislice detector array, the multislice detector array and the fan-shaped beam together defining an first iso-channel of the multislice detector array when the CT imaging system is utilized for scanning without ganging groups of detector elements. The method includes: ganging groups of adjacent detector elements in the x-direction; scanning an object with the CT imaging system using the ganged groups of adjacent detector elements to acquire projection data; and reconstructing an image of the object utilizing the acquired projection data and an adjusted iso-channel of the multislice detector array different from the first iso-channel; wherein reconstructing an image of the object includes filtering and backprojecting the acquired projection data without interpolation.
Yet another embodiment of the present invention provides a method for imaging an object with a computed tomography (CT) imaging system having a rotating gantry, a multislice detector array on the rotating gantry having parallel rows of detector elements, the parallel rows defining an x-direction, and an x-ray source on the rotating gantry configured to emit a fan-shaped x-ray beam in an x-y plane through an object to be imaged and towards the multislice detector array, the multislice detector array and the fan-shaped beam together defining an first iso-channel of the multislice detector array when the CT imaging system is utilized for scanning without ganging groups of detector elements. The method includes: ganging groups of adjacent detector elements in the x-direction; scanning an object with the CT imaging system using the ganged groups of adjacent detector elements to acquire projection data; and reconstructing an image of the object utilizing the acquired projection data and an adjusted iso-channel of the multislice detector array different from the first iso-channel, wherein the reconstructing includes performing a backprojection on the acquired projection data, and selecting, as the adjusted iso-channel, an iso-channel in the backprojection offset from the first iso-channel by an amount effective to reduce artifacts in the reconstructed image.
Still another embodiment of the present invention provides a method for imaging an object with a computed tomography (CT) imaging system having a rotating gantry, a multislice detector array on the rotating gantry having parallel rows of detector elements, the parallel rows defining an x-direction, and an x-ray source on the rotating gantry configured to emit a fan-shaped x-ray beam in an x-y plane through an object to be imaged and towards the multislice detector array, the multislice detector array and the fan-shaped beam together defining an first iso-channel of the multislice detector array when the CT imaging system is utilized for scanning wi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for compensating computed tomographic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for compensating computed tomographic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for compensating computed tomographic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3044707

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.