Methods and apparatus for cable interconnection verification

X-ray or gamma ray systems or devices – Specific application – Computerized tomography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C378S095000, C378S207000

Reexamination Certificate

active

06195408

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to computed tomography (CT) imaging and more particularly, to verification of cable interconnection in a CT imaging system.
In at least one known CT system configuration, an x-ray source projects a fan-shaped beam which is collimated to lie within an X-Y plane of a Cartesian coordinate system and generally referred to as the “imaging plane”. The x-ray beam passes through the object being imaged, such as a patient. The beam, after being attenuated by the object, impinges upon an array of radiation detectors. The intensity of the attenuated beam radiation received at the detector array is dependent upon the attenuation of the x-ray beam by the object. Each detector element of the array produces a separate electrical signal that is a measurement of the beam attenuation at the detector location. The attenuation measurements from all the detectors are acquired separately to produce a transmission profile.
In known third generation CT systems, the x-ray source and the detector array are rotated with a gantry within the imaging plane and around the object to be imaged so that the angle at which the x-ray beam intersects the object constantly changes. A group of x-ray attenuation measurements, i.e., projection data, from the detector array at one gantry angle is referred to as a “view”. A “scan” of the object comprises a set of views made at different gantry angles during one revolution of the x-ray source and detector. In an axial scan, the projection data is processed to construct an image that corresponds to a two dimensional slice taken through the object.
One method for reconstructing an image from a set of projection data is referred to in the art as the filtered backprojection technique. This process converts the attenuation measurements from a scan into integers called “CT numbers” or “Hounsfield units”, which are used to control the brightness of a corresponding pixel on a cathode ray tube display.
To reduce the total scan time required for multiple slices, a “helical” scan may be performed. To perform a “helical” scan, the patient is moved while the data for the prescribed number of slices is acquired. Such a system generates a single helix from a one fan beam helical scan. The helix mapped out by the fan beam yields projection data from which images in each prescribed slice may be reconstructed. In addition to reduced scanning time, helical scanning provides other advantages such as improved image quality and better control of contrast.
In helical scanning, and as explained above, only one view of data is collected at each slice location. To reconstruct an image of a slice, the other view data for the slice is generated based on the data collected for other views. Helical reconstruction algorithms are known, and described, for example, in C. Crawford and K. King, “Computed Tomography Scanning with Simultaneous Patient Translation,” Med. Phys. 17(6), November/December 1990.
At least one known imaging system is used to generate images of a heart of a patient to detect coronary artery calcification (CAC). The CAC is used to identify evidence of coronary atherosclerosis in the heart. In order to identify CAC in the image data, data is collected at specific times during a cycle of the heart. One known imaging system utilizes an EKG signal from the patient to time the collection of the data. As a result, images may be generated for specific times, for example during a systolic condition, so that heart motion is minimized. To date, the EKG signal is generated using EKG electrodes which are applied to the patient and connected to the imaging system after the patient was placed on a table of the imaging system. As a result, the setup time is increased and throughput of the imaging system is negatively impacted. In addition, if the EKG signal cable is improperly connected or fails, the imaging system will be unable to generate the properly timed images. Consequently, the scan will be forced to be repeated increasing x-ray dosage to the patient.
It would be desirable to provide a system which verifies proper connection of the EKG signal before scanning of the patient. It also would be desirable that such a system detect failures of an EKG signal cable during and after scanning of the patient without significantly increasing the cost of the imaging system.
BRIEF SUMMARY OF THE INVENTION
These and other objects may be attained by an imaging system which, in one embodiment, includes a verification system having an interconnection verification unit, or circuit for verifying signal transmission of an interconnection cable. The verification circuit detects various modes of the imaging system and verifies the interconnection between an EKG subsystem and the imaging system.
In one aspect, the present invention is directed to verifying whether the interconnection cable, which couples the EKG signal generated by the EKG subsystem to the imaging system, is properly connected and conducting. The conduction of the EKG signal to the imaging system is verified prior to, during and after scanning the patient by transmitting patterns from the EKG subsystem to the imaging system. If the patterns match the expected patterns, a verification signal is generated indicating proper connection of the cable. More specifically, a signal pattern is transmitted from the EKG subsystem through the interconnection cable to the verification circuit. As a function of the scanning mode of the imaging system, the verification circuit transmits a response pattern to the EKG subsystem over the cable.
In another aspect, the present invention allows the EKG subsystem to be remotely coupled to the patient prior to the patient being placed on a table of the imaging system. More specifically, EKG electrodes may be coupled to the patient and the EKG subsystem at a site remote from the imaging system. After the patient is placed on the imaging system table, a removable interconnection cable may then be coupled to the imaging system and the EKG subsystem. The proper connection and conduction of the interconnection cable is then verified using the verification system.
The above described verification system verifies proper connection of the interconnection cable before scanning of the patient. In addition, the verification system detect failures of the cable during and after scanning of the patient without significantly increasing the cost of the imaging system. Additionally, the verification system allows the EKG subsystem to be remotely coupled to the patient to reduce setup time required to scan the patient.


REFERENCES:
patent: 3626932 (1971-12-01), Becker
patent: 3952201 (1976-04-01), Hounsfield
patent: 4803639 (1989-02-01), Steele et al.
patent: 5751837 (1998-05-01), Watanabe et al.
patent: 1951232 (1970-04-01), None
patent: 19503593 (1996-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for cable interconnection verification does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for cable interconnection verification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for cable interconnection verification will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2591031

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.