Image analysis – Image segmentation
Reexamination Certificate
2001-07-19
2003-09-23
Mehta, Bhavesh M. (Department: 2625)
Image analysis
Image segmentation
C382S305000
Reexamination Certificate
active
06625311
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to methods of data structure characterization, indexing, storage and retrieval; and more particularly comprises a method for enabling easy characterization, storage and retrieval of multi-dimensional data structures involving use of a translation, rotation and scaling invariant index which results from concatenating a series of Eigenvalue calculation mediated index elements determined at a plurality of hierarchical data depth levels. A variation thereof pre-selects pixels in data structures which have associated therewith significant intensity and/or color gradient(s) with respect to surrounding pixels, in, for instance, “X” and/or “Y” and/or “Z” direction(s), then utilizes said pre-selected pixels in the data structure characterizing spatial first and second central moment calculations. Data structure characterizing vector(s) are constructed from spatial data structure first central moment values, and non-degenerate parameter(s) determined from second central moment calculations, as well as from, when applicable, frequency-of-occurance integer counts of said pre-selected pixels.
BACKGROUND
Data structures, such as two dimensional pixel arrays, are being generated at an ever increasing rate. For instance, algorithm generated and scanned computer screen images, X-ray, CT, MRI and NASA satellite, space telescope and solar explorer systems generate thousands of images every day. To make optimum use of said images, however, convenient methods of data characterization, storage and retrieval are required. For example, a medical doctor might obtain an X-ray image of a patient's chest but has to rely on “diagnostic art” to arrive at a diagnosis. Were it possible to determine an index which characterizes said X-ray image and also enable easy storage and retrieval thereof, it would be possible to compare said index to a catalog of indices of various X-ray images which are known to be associated, with various healthy or pathologic conditions. Thus diagnosis could be moved toward the very desirable goal of being objectively definite in a mathematical sense.
Continuing, it must be understood that conventional data bases are stored as text with organization being in terms of fields and values. Examples are business product, customer lists, sales data etc. To retrieve such data a user must issue a query in text format, similar to what is done in natural languages. It is essentially impossible to use such an approach to store and retrieve the contents of most data images, for example, because there is no convenient manageable way to describe such data images in terms of said fields and values. Data Images are instead typically stored in the form of compressed digital files of hundreds of thousands of binary numbers, and said storage technique does not facilitate easy image characterization, storage and retrieval. And, while it is possible to describe a data image with a text Index, to examine the data image still requires that the data associated with said Index be retrieved. It is also possible to assign an arbitrary serial number to a data image to facilitate data storage and retrieval, but under this approach the serial number provides no insight to the image and again, to examine data image, requires accessing the image data per se.
A preferred approach to the characterization of data images, which provides an index for use in storage and retrieval thereof, is to base the index on features in the data image. To arrive at such an index, however, is typically computationally complex, requiring hundreds of thousands of calculations. That is, determination of said index must typically be extracted from a data image “off-line”. Characteristic indices so determined are called “image indices”, and ideally render a concise description, not only of an image color and intensity content on a row and column basis , but also of the nature and shape of objects therein. A problem arises, however, in that many image features can not be easily described. Geometric shapes in a data image, for example, can require a combination of text annotation and numeric values and often the result is not at all concise.
Continuing, it must be understood that conventional data are stored as text, with organization being in terms of alphebetic and numerical value fields. Examples are business product, customer lists, sales data etc. To retrieve such data a user must issue a query text format, similar to what is done in natural languages. It is, however, essentially impossible to use such an approach to store and retrieve the contents of most data structures, (two dimensional picture graphic data images for example), because there is no convenient manageable way to describe such data structures in terms of said alphabetic and numerical value fields. Data Structures are instead typically stored in the form of compressed digital files of hundreds of thousands of binary numbers, and said storage technique does not facilitate easy data structure indexing, characterization, storage and retrieval. And, while it is possible to describe a data structure with a text Index, to examine the data structure data still requires that the data associated with said index be retrieved. It is also possible to assign an arbitrary serial number to a data structure to facilitate data storage and retrieval, but under this approach the serial number provides no insight to the data, and again, to examine data structure, requires accessing the data per se.
A preferred approach to the characterization of data structures, which provides an index for use in storage and retrieval thereof, is to base the index on features in the data structure. To arrive at such an index, however, is typically computationally complex, requiring hundreds of thousands of calculations. That is, determination of said index must typically be extracted from a data structure “off-line”. Characteristic indices so determined are called “structure indices”, and ideally render a concise description, not only of a structure color and intensity content on a row and column basis, but also of the nature and shape of objects therein. A problem arises, however, in that many data structure features can not be easily described. Geometric shapes in a data structures, for example, can require a combination of text annotation and numeric values and often the result is not at all concise.
Relevant considerations in developing an approach to extracting “image indices” from a data image or data structure include:
1. Uniqueness—different images/data structures should have different associated indices, (ie. an image index should be non-degenerate);
2. Universality—image/data structure indices must be extractable from essentially any kind of image to be characterized, stored and retrieved by use thereof;
3. Computation—image/data structure indices must be easily computed from any data structure to be characterized, stored and retrieved by use thereof, and computation complexity should be kept to a minimum possible;
4. Conciseness—image/data structure indices must concise and easy to store;
5. Invariance—descriptive features in an image/data structure must tolerate change of scale, rotation and translation transformations, image object position shifting, calibration of color and pixel intensity and return essentially unchanged image indices;
6. Noise resistant—random noise entry to image/data structure should not significantly change the image index extracted therefrom.
Previous attempts at extracting an index for an image/data structure have focused on use of:
pixel intensity and color distributions, (see an article titled “Query By Image And Video Content: The QBIC System”), IEEE Trans. on Computers, (Sep. 1995));
pixel texture patterns (see a book titled “Digital Image Processing”, Gonzales, Addison-Wesley Pub. (1992)); and
edge and boundary-line shapes, (see a book titled “Digital Image Processing And Computer Vision”, Schalkoff, John Wiley & Sons, (1989)),
etc. as the basis of approach. These techniques are mainly based on the calcu
Mehta Bhavesh M.
Patel Kanji
The Board of Regents of the University of Nebraska
Welch James D.
LandOfFree
Methodology for data structure characterization, indexing,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methodology for data structure characterization, indexing,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methodology for data structure characterization, indexing,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3077544