Electrical computers and digital processing systems: multicomput – Computer-to-computer session/connection establishing
Reexamination Certificate
1998-06-30
2002-10-15
Luu, Le Hien (Department: 2152)
Electrical computers and digital processing systems: multicomput
Computer-to-computer session/connection establishing
C709S217000, C709S218000, C709S220000
Reexamination Certificate
active
06466981
ABSTRACT:
FIELD OF THE INVENTION
The invention is related to the field of communications systems, and in particular, to a system for connecting a computer to a communications system.
1. Problem
There is a growing demand for systems that transparently connect a user's computer to a communications system. This demand is especially acute with regard to high-speed connections to advanced communications systems, such as the Internet. High-speed Internet connections are typically installed to the home or office. In a typical home system, an Integrated Service Digital Network (ISDN) connection is provided to the home where it is connected to a desktop computer. In a typical corporate system, a corporate server and multiple desktop computers are connected to a Local Area As Network (LAN). The corporate server provides an intranet over the LAN to the desktop computers. The corporate server is also connected to the Internet over a high-speed connection through a firewall. The high-speed connection provides the desktop computers with high-speed Internet access through the corporate server and firewall.
Unfortunately, a user does not have access to the high-speed connection when they travel away from the home or office. The user typically needs to communicate while traveling using a portable laptop computer to access e-mail, Internet services, or corporate networks. The present systems that interface laptop computers with communications systems are problematic.
One existing solution uses a conventional telephone line to connect a portable laptop computer to an Internet service provider or to a corporate network. However, this solution is undesirable because the conventional telephone line is not a high-speed connection and data transfer is slow. The use of the telephone line for the computer reduces the capacity of the telephone system for conventional telephone traffic. In addition, the telephone connection is expensive to maintain for long-distance calls.
Another solution provides high-speed Internet access through kiosks located in various public places. The kiosks are equipped with their own computers that are already connected to a high-speed connection. However, the kiosk solution is undesirable because the kiosks do not allow the user to connect their own laptop computer directly to the high-speed connection, and the kiosk computer may not have the software applications that are desired by the user. In addition, the user may have personal configurations on the laptop computer that are required for a productive Internet session. For example, a web browser in the laptop computer may have personalized settings for important web sites, or an encryption program in the laptop computer may have keys that are required to exchange files with a corporate site.
Another solution allows users to connect their laptop computer directly to a high-speed connection. The user must re-configure the laptop computer to make the high-speed connection operational. This solution is undesirable because configuring the laptop computer to operate over a high-speed connection is a complex task beyond the skill of the typical user. Multiple operations are required before the laptop computer is properly configured to communicate over the high-speed connection. Further, the laptop computer must be re-configured to its original state when the user returns to the office for communication with the corporate network. The complex configuration and re-configuration of the laptop computer should be avoided.
Many communications software packages for the above-described solutions are available for laptop computers. These software packages are relatively large in order to generate screens offering numerous features. Some examples of these software packages are web browsers, configuration wizards, and modem control utilities. At present, these software packages are not designed to automatically configure communications software in the computer to connect through an access port to a server for a high-speed connection. In addition, these software packages require a relatively large amount of memory that diminishes the computer's storage capacity. A large software package can also take a long time to download if it must be retrieved from a server.
At present, computer users need a technology that allows them to connect their own computer through an access port to a server that typically provides a high-speed connection to an advanced communications system, such as the Internet. The technology should not require the user to perform the complex task of configuring the computer to communicate over a high-speed connection and then re-configuring the computer for the office network. The technology should also be efficient to avoid loading a large software program onto the computer.
2. Solution
The invention solves the above problems with technology that provides a computer user with a connection to a communications server when they connect their computer to an access port. The technology automatically configures the computer for communication with the server and then restores the initial computer configuration after the session. Typically, the user need only connect the computer to the access port to automatically receive a web page from the communications server offering a high speed Internet connection.
The invention includes an access server that broadcasts an address over a network. A computer connected to the network executes an access software application that directs the computer to process the broadcast. The access software application also directs the computer to execute a communications software application using the address from the broadcast. When executed, the communications software application directs the computer to communicate with a communications server at the address. The communications server typically offers high-speed Internet access to the user.
In one example of the invention, the user simply connects their laptop computer to an Ethernet port in a hotel room and powers-up the computer. The laptop computer executes a small access software application that directs the laptop computer to detect a Uniform Resource Locator (URL) that is broadcast over the Ethernet network by an access server. The access software application directs the computer to execute a web browser using the URL. The web browser directs the computer to retrieve and display a web page represented by the URL from a communications server. The web page contains basic service information. After the user responds to the web page, an application server authorizes the user, and if the user is authorized, the application server directs a firewall in the communications system to provide the user with a high-speed connection to the Internet. The user can access e-mail or exchange files with their corporate network over the high-speed Internet connection. The access software application restores the initial settings to the computer after the communications session, so the user can simply plug back into their home or office network without manual re-configuration.
The access software application leverages the web browser in the computer to provide the display and establish Internet connections. Use of the web browser allows the access software application to remain relatively small and preserve memory and performance for other user applications on the computer. In addition, the user is not required to use conventional telephone lines with a dial-up modem connection. The high-speed Internet connection speeds up the data transfer, conserves telephone system capacity, and avoids costly long-distance charges.
REFERENCES:
patent: 5764736 (1998-06-01), Shachar et al.
patent: 6006264 (1999-12-01), Colby et al.
patent: 6009474 (1999-12-01), Lu et al.
patent: 6012084 (2000-01-01), Fielding et al.
patent: 6012088 (2000-01-01), Li et al.
patent: 6012090 (2000-01-01), Chung et al.
patent: 6012100 (2000-01-01), Frailong et al.
Newton's Telecom Dictionary, Newton, Harry, Flatiron Publishing, 14th Ed., Mar. 1998.*
Finney, Paul Burnham, “Microsoft is moving into
Banner & Witcoff , Ltd.
Luu Le Hien
Microsoft Corporation
Prieto Beatriz
LandOfFree
Method using an assigned dynamic IP address and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method using an assigned dynamic IP address and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method using an assigned dynamic IP address and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2942115