Method to schedule a vehicle in real-time to transport...

Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S204000, C701S210000, C340S991000, C340S994000, C705S006000

Reexamination Certificate

active

06411897

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This application relates to scheduling methods. More specifically, the present invention relates to scheduling, in real time, freight and passenger transportation.
2. Statement of the Problem
Many routes serviced by passenger coaches to outlying areas (e.g., farming and mountain communities) have become unprofitable as the cost of servicing the route exceeded passenger demand. As such, these routes were dropped, reducing the mobility of people living in these areas who are unable to afford private transportation (e.g., some elderly, disabled, and economically disadvantaged residents). Therefore, a need exists to schedule new routes using a vehicle that can simultaneously transport both passengers and freight, thereby ensuring the profitability of the route with fees charged for transportation of freight while servicing the transportation needs of passengers in these outlying areas.
In addition, the need to have freight delivered, especially in outlying areas, can change dramatically over short periods of time and can therefore be difficult to schedule in advance. For instance, a sudden change in the weather in a mountain community can cause a local grocery store to run short on supplies and thus require a shipment that was not needed nor predicted just a day earlier. Or a hardware store near a farming community may do heavy business one week and hardly any business the following two weeks. As such shipments are only required on an “as needed” basis. Therefore, another need exists to maintain the flexibility of the transportation schedule for both passenger and freight transportation to accommodate the needs of the various communities.
Finally, the transportation demands can change even after the vehicle is in route. For example, where the vehicle was scheduled to travel through Town A for a single delivery, and that delivery has been cancelled, there may no longer be sufficient reason for the vehicle to travel through Town A. Therefore, yet another need exists to update the transportation schedule in real-time based on changes to the transportation needs of the serviced communities.
The prior art does not address scheduling both freight and passenger transportation to meet the needs described above. Prior art passenger scheduling (i.e., airlines, trains, coaches, etc.) generally uses fixed schedules. That is, the destinations and corresponding arrival/departure times are fixed whether there is a demand for service at a given location and time or not. Passenger schedules can be “bumped” in certain situations. For instance, an airline may reschedule or reroute flights due to weather conditions at one of the airports. However, these schedules are not created in real-time based on the transportation needs of the serviced communities. Instead, these schedules are “bumped” based on external factors (i.e., the weather, engine problems, etc.). These schedules are still fixed.
Likewise, prior art freight scheduling typically does not provide fixed schedules due to the ever-changing nature of freight transportation. Instead, prior art freight scheduling generally provides a rate and a cutoff time for requests where the freight must be delivered by a deadline (e.g., a request to deliver freight to a destination by 5 p.m. on Tuesday must be received by 12 noon on the prior Monday). Other prior art freight scheduling includes load matching services for equipment owners. For example, where a truck has delivered freight from City A where the truck is based, to City B, a load matching service finds a freight that needs to be delivered from City B to City A or somewhere near City A so that the truck does not make the return trip without a load.
A number of prior art approaches exist which address a portion of the above needs. U.S. Pat. No. 5,444,444 uses a central controller and a GPS system to ascertain the location of delivery vehicles. The controller compares the actual location of the delivery vehicle to the delivery location, estimates the time of arrival to the delivery location, and notifies the recipient at the delivery location of the pending delivery time.
U.S. Pat. No. 4,092,718 sets forth a computerized dispatching system that allows a central computer to plot travel paths for a fleet of buses based upon passenger purchase of tickets. This enables the computer to schedule passengers to embark or disembark from the bus and to skip any other stops. The central computer activates indicators at each bus station to show the arrival time of the next vehicle or whether that stop will be skipped. In one example, a passenger aboard a bus can access the central computer and change a disembarkation stop to another stop. Upon receiving requests such as this, the central computer provides routing instructions and new display information at each station.
U.S. Pat. No. 5,987,377 pertains to a method and apparatus for determining the expected time of arrival of delivery truck. The delivery truck has a mobile unit which determines its vehicle position and expected time of arrival. The expected time of arrival is updated continuously throughout the trip. In the event a delivery is late, a central dispatch can inform the party awaiting the delivery of the lateness and what the new delivery time is.
U.S. Pat. No. 6,006,159 sets forth a public transit vehicle arrival information system. The transit vehicles have GPS devices which communicate with a central computer. A passenger can use a portable access means such as a pager, notebook, a palm computer to ascertain the estimated arrival time. This approach is also capable of determining the number of occupied and unoccupied seats in a vehicle. The system operates in real time and continually updates predicted arrival time and passenger loads. A passenger may carry a portable display module to receive current information as to arrival time or can receive the information over a personal computer, a home, a laptop, etc.
None of the above references teach the real time scheduling of both passengers and freight from a single vehicle. Hence, a need exists that provides a scheduling method that utilizes a vehicle that is capable of hauling both freight and transporting passengers that provides a real time scheduling process for both passengers and freight. An example of such a vehicle is found in co-pending patent application Ser. No. 09/634,326, filed Aug. 7, 2000, entitled PASSENGER AND FREIGHT CARRYING VEHICLE owned by the common assignee of the present invention.
SUMMARY OF INVENTION
1. Solution to the Problem
The present invention is a method to schedule a vehicle in real-time to simultaneously transport freight and passengers. By scheduling the vehicle to transport both passengers and freight, the profitability of existing routes increases and new routes can be added (i.e., the transportation of freight provides a guaranteed source of income regardless of the number of passengers, if any). In addition, under one embodiment of the present invention, a passenger route is reactively scheduled as a result of freight becoming available on the same route. Under another embodiment, passengers or groups of passengers can also submit transportation requests. Thus, schedules can be created on an “as needed” basis. For example, a vehicle can be scheduled to travel among Towns A, B, and C one day, and Towns A and D the next, based on the transportation needs of the various communities. The schedule is not fixed and therefore the method of the present invention accommodates the needs of the various communities. Finally, requests from shippers and passengers are received using the method of the present invention, and the schedule is continually updated in real-time to reflect any changes due to these requests, fluctuating delivery times (e.g., to allow for time requirements to load larger freight), and actual vehicle travel times. Thus, the scheduling method of the present invention allows for new unserved or underserved passenger and freight routes to be added on a real-time basis as either becomes available on t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method to schedule a vehicle in real-time to transport... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method to schedule a vehicle in real-time to transport..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method to schedule a vehicle in real-time to transport... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2913415

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.