Method to prevent fertilization in mammals by administering...

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S450000, C424S559000, C424S561000, C424S812000, C514S021800, C530S853000

Reissue Patent

active

RE037224

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a vaccine composition for the immunocontraception of mammals.
BACKGROUND OF THE INVENTION
There is a real need for population control in several species of domestic and wild animals. Methods such as surgical sterilization, or more drastically, culling are generally not acceptable or even allowable in most countries. For example, in Canada the culling or harvesting of seals was prohibited in the early 1980's, resulting in an increased seal population from 10,000 in 1978 to approximately 45,000 at present. Increases in harp seal populations have been much greater. Unfortunately, the increasing population of seals is eating away at the diminishing fish stocks which poses serious problems for the fishing industry. The seals also contain parasites such as seal worms that they pass on to the fish. In 1986 it was estimated that the cost to the fishing industry of removing seal worms from fish by hand was upwards of $30 million a year. Therefore, it is highly desirable to develop an effective form of contraception in mammals, such as seals, in order to effectively control the population growth of certain mammals.
One form of contraception for mammals has involved immunocontraception using glycoproteins isolated from the zona pellucida, a covering which surrounds oocytes. The zona pellucida glycoproteins (hereafter referred to as ZP) provide an attachment site for sperm. Immunocontraception with ZP results in the production of antibodies to ZP which cause (a) an alteration of the nature of the ZP membrane of ova, thereby inhibiting sperm entry, (b) an inhibition of implantation of fertilized ova into the uterus and (c) decreased ovarian follicular differentiation (Henderson, C. J., M. J. Hulme and R. J. Aitken. 1988. Contraceptive potential of antibodies to the zona pellucida. J. Reprod. Fert. 83: 325-343). Immunocontraception has been induced with both zona pellucida glycoproteins and epitopes of these glycoproteins which have been sequenced, synthesized and coupled to carrier proteins (Millar, S. E., S. M . Chamow, A. W. Baur, C. Oliver, F. Robey and J. Dean. 1989. Vaccination with a synthetic zona pellucida peptide produces long-term contraception in female mice. Science 246: 935-938). The use of ZP glycoproteins for immunocontraception has several advantages over other contraception methods. Firstly, ZP glycoproteins are unique to the female reproductive system and therefore, anti-ZP antibodies likely have little or no effect on other tissues. Secondly, the infertility caused by anti-ZP antibodies is reversible, although, hyper- immunization may cause permanent sterility.
Previous studies have shown that in order to effect immunocontraception, multiple injections of ZP were necessary (Kirkpatrick, J. F., I. K. M. Liu and J. W. Turner. 1990. Remotely-delivered immunocontraception in feral horses. Wildl. Soc. Bull. 18: 326-330). Multiple injections are clearly not practical for wild populations as it entails recapturing the same wild animal each time an injection is necessary. Multiple injections are also cumbersome in any situation.
Therefore, it is desirable to develop an immunocontraceptive vaccine which would be effective for long periods following a single injection in an efficient delivery system.
Liposomes have been used to carry drugs to sites of inflammation and infection or in some cases tumours. Liposomes are microscopic spheres composed of either a single or multiple concentric bilayer sheets, and range in size from a nanometer to several micrometers in diameter. These bilayer sheets can be formed from a wide variety of phospholipids in varied formulations. Cholesterol can be included in the bilayer in order to increase the bilayer strength and reduce the leakage of materials encapsulated within the entrapped aqueous interior. A vast array of compounds can be associated with liposomes, including small molecules, drugs, proteins, and nucleic acids. Liposome-associated compounds can be encapsulated within the aqueous interior of the liposome (i.e. between the bilayer sheets), integrated into the bilayer, or adsorbed or attached to the bilayer surface. The location depends upon the properties of the associating compounds as well as the procedures used for the formation of the liposome.
A liposome based vaccine system has been described for immunization against human malaria (Fries et al, 1992. Liposomal Malaria Vaccine in humans: A safe and potent adjuvant strategy. Proc. Natl. Acad. Sci. USA. 89: 358-362). In this system, a recombinant malaria protein derived from Plasmodium falcioarum was encapsulated into liposomes and injected into male volunteers. However the results indicate that at least three injections of the vaccine were required in order to produce an elevated antibody response.
SUMMARY OF THE INVENTION
The present invention relates to an immunocontraceptive vaccine preparation which comprises zona pellucida antigens incorporated into a liposome delivery system. The liposome system effects the slow release of antigen resulting in an extended period of antibody production and thereby an extended period of contraception. Therefore, the present invention provides a method to achieve immunocontraception of mammals using a single injection of zona pellucida glycoproteins.
Accordingly, the invention provides a vaccine composition for the immunocontraception of a mammal which comprises a zona pellucida derived antigen incorporated into a liposome system.
The invention further provides a vaccine composition capable of inducing the production of antibodies to a zona pellucida antigen, said composition comprising a zona pellucida derived antigen incorporated into a liposome system.
In one embodiment of the present invention, the liposome vaccine composition is freeze-dried and incorporated into a BALLISTIVET biobullet. Such an embodiment makes the vaccine easier to deliver to the animal.
In another aspect, the invention provides a method of preventing fertilization in a mammal which comprises
parenterally
administering an effective amount of the above-described vaccine.
DETAILED DESCRIPTION OF THE INVENTION
Isolation and purification of zona pellucide glycoproteins
Zona pellucidaglycoproteins were isolated and purified as described by Yurewicz (in Yurewicz, E. C., A. G. Sacco, and M. G. Subramanian, Structural Characterization of the Mr=55,000 Antigen (ZP3) of Porcine Oocyte Zona Pellucida, The Journal of Biological Chemistry 262: 564-571 (1987). Porcine ovaries were homogenized and the oocytes recovered from the homogenate by sieving through nylon screens of decreasing pore size (500, 350, 200, 175, 100 and 40 &mgr;m). The oocytes were homogenized with a glass-teflon apparatus and the homogenate was passed through a 40 um screen to collect the fractured zonae. The fractured zonae were washed with buffer and recollected on the 40 um screen. Zona pellucida glycoproteins were solubilized by incubating the zonae in a water bath (73° C. for 20 minutes). The fraction obtained (solubilized intact zona pellucida glycoproteins, SIZP) was shown to be at least 95% pure by comparison to a reference standard of ZP using an ELISA assay.
ZP3 was purified from SIZP as described by Yurewicz et al (1987). ZP3 is one of three glycoproteins that make up the mealis zona pellucida. ZP3 is the major macromolecular component of the oocyte zona pellucida and has been shown to be the receptor for sperm.
Porcine ZP has been used to effect immunocontraception in a variety of mammals. Porcine ZP pellucida was used in the present studies for several reasons. Firstly, a comparison of the reactivity of ZP from five mammalian species to rabbit antiserum against porcine ZP indicated that pig ZP was recognized best followed by dog ZP while rat and cat ZP reacted poorly (Maresh, G. A. and B. S. Dunbar. 1987. Antigenic comparison of five species of mammalian zonae pellucida. J. Experimental Zoology 244: 299-307). Since seal and dog are closely related, (Berta, A., C. E. Rae, A. R. Wyss, 1989, “Skeleton of the oldest known pinniped Enaliarc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method to prevent fertilization in mammals by administering... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method to prevent fertilization in mammals by administering..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method to prevent fertilization in mammals by administering... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2436342

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.