Method to install underground pipe casing

Hydraulic and earth engineering – Subterranean or submarine pipe or cable laying – retrieving,... – Advancing subterranean length of pipe or cable

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C175S062000, C405S145000, C405S146000

Reexamination Certificate

active

06652190

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
The present invention relates to the field of trenchless tunneling by jacking or ramming pipe casing of large diameter over long distances, especially with respect to the installation of 100-400 feet of pipe casing which is larger than 72 inches in diameter.
2. Description of Related Art
There are various methods currently used to install underground pipe without digging trenches, commonly referred to as trenchless tunneling. These methods use pipe ramming and jacking, tunnel boring machines, or Micro-Tunneling.
Trenchless tunneling methods use tunnel boring machines (TBM) that include a boring shield that either pushes itself forward with completed extruded segments either made from precast concrete or bolted steel panels. Variation on the boring method has the TBM or mole mounted on or in front of the first casing pipe that is thereafter pushed into the formed tunnel with large hydraulic jacks. As these tunnel boring machines move forward through the ground, the soil is removed and typically mixed with a fluid and the mixture pumped out of the tunnel into a separation plant, wherein the solids are separated from the fluids. These methods do not work well in shallow applications, depending on soil type. A minimum industry standard requirement is a cover over the tunnel to be installed of at least two times the machine diameter. Tunnel boring is very slow and very expensive because of the type of equipment required.
TBM or Micro-tunneling involves underground trenchless tunneling in which energy is used to excavate the soil loose during the tunneling operation for soil removal. Again, Micro-tunneling is very slow in terms of the time required to create a tunnel and can be quite expensive
Trenchless tunneling methods that use pipe ramming or pipe jacking are known. The method typically uses a casing liner that is pushed underground into the tunnel by either a pneumatic ramming hammer, a set of hydraulic rams in tandem, or a combination of the two. The tunnel is typically started in a jacking pit that is dug to a depth to which a casing pipe or tunnel liner will be placed under the ground.
Capacities of currently employed ramming hammers and jacking pipe casing installations to date have been limited in capacity, such as total length or pipe size, requiring internal excavation as sections of pipe are installed in the tunnel. The ramming hammers and jacking rams have not had sufficient force for extended long tunnels with large diameters such as 6 ft. through 12 ft. for extended long tunnels above 100 feet because of the immense friction encountered as the pipe casing sections are formed and the entire casing gets longer and longer. By excavating concurrently with ramming or jacking, the risks of a tunnel cave-in or settlement of the face is a possible danger. The production process or the time required for installing the tunnel using jacking or ramming or a combination thereof is impacted by an interruption of having to excavate the pipe interior before another pipe section can be driven.
U.S. Pat. No. 5,632,575 issued May 27, 1997, describes a method and apparatus for controlled piping of bentonite around a pipe-jacked tunnel. Although this patent shows trenchless tunneling, it may use a combination of a tunnel boring machine or even tunnel excavation using hand labor. The system uses a tunnel ram and requires lubrication that presses the limit of the hydraulic jacking. This is a completely different operation than pile driving a tunnel casing great lengths using a horizontal pile driver.
U.S. Pat. No. 4,391,553 issued Jul. 5, 1983, shows a hydraulic control system and method of controlling the operation of tunneling apparatus. This shows the conventional use of a pair of hydraulic rams and pumps. This system is severely limited in total pipe casing achievable distances and operates completely differently than Applicant's invention.
U.S. Pat. No. 4,557,672 issued Dec. 10, 1985, shows an apparatus and method for tunnel construction with shield drive. Again, this is a trenchless tunneling method that is completely different than Applicant's invention. This method uses a shield drive and incorporates a concrete tunnel lining directly behind the shield. This is very slow and expensive.
U.S. Pat. No. 3,742,718 issued Jul. 3, 1973, shows a tube driving apparatus for driving large diameter tubes where a limited amount of space is available. The method and apparatus shown are severely limited in the total trenchless pipe distances available of the tube construction, which is completely different than that disclosed by Applicant's invention.
U.S. Pat. No. 4,398,845 issued Aug. 16, 1983, shows a tunnel driving apparatus that incorporates a cutter shield with a plurality of drive members in a side-by-side, cylindrical array. This system is completely different than that employed by Applicant.
The subject of the present invention overcomes the problems discussed above by providing a method and system that uses a powerful pile driving hammer, like those used for offshore vertical pile driving construction, that greatly increases the length of a trenchless tunnel casing to be driven while greatly reducing the risk of cave-in. With existing jacking/ramming systems, as more tunnel liner sections are installed, the friction between the liner sections and interior and exterior surface and the surrounding soil increases. Due to the limited driving capacity of these systems, this phenomenon requires the interior plug to be removed as each tunnel section is added in order to reduce the upper pushing limit of the typically used jacking equipment.
There is a need for a method and apparatus that has sufficient driving force to drive large sections of tunnel casing, or even the entire tunnel casing, before excavation of the soil plug begins in order to improve safety and production and also allow greater diameter pipe and longer drive lengths in one continuous operation without excavation, thereby reducing the risk of collapse of the face or settlement of the ground. This is important since typically, these installations underground are often planned under busy roadways or railroads (or a combination of both), whereby it is not practical or cost effective or even possible to open cut with open trenches. Thus trenchless tunneling is extremely important in certain environments. With the present invention, the Applicant can use trenchless tunneling to drive underground pipe casing over 72 inches in diameter and up to 168 inches for distances exceeding 100 feet. This can also be done very quickly in a matter of hours instead of days and weeks compared to other methods of trenchless tunneling at greatly reduced cost.
The use of an impact piling (pile driving) hammer (such as a modified Hydrohammer manufactured by IHC) that uses low frequency and high velocity and high energy is preferred over the use of a low energy, low velocity, and high frequency system, such as ramming, in that the soil particles are forcibly sheared with the former and not simply brought in suspension as with the latter. The limitations of pipe ramming/jacking are especially evident for installation done in damp or fluid-bearing soils where the pneumatic ramming can lead to soil liquification that can cause the soil plug to run.
Another advantage of the large capacity available with the low frequency and high velocity and high energy system in accordance with the present invention using a piling hammer is that on particularly environmentally sensitive projects, a hammer of sufficient driving capacity can be chosen so as to eliminate the need to lubricate. Thus, in certain environmental situations, the system avoids environmental contamination when the installation, for example, is near or over fish-bearing creeks. However, if lubrication is permitted, it also allows for even more increased distance that can be obtained using the pile driving hammer in accordance with the present invention.
SUMMARY OF INVENTION
A trenchless tunneling system and method for driving horizont

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method to install underground pipe casing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method to install underground pipe casing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method to install underground pipe casing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3160050

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.