Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
1998-10-08
2001-04-10
Lateef, Marvin M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C128S899000
Reexamination Certificate
active
06216028
ABSTRACT:
TECHNICAL FIELD
This invention is generally directed to a system and method for detecting the location of an indwelling medical device within the body of a patient and, more specifically, to a detection apparatus which senses magnetic field strength generated by a magnet associated with the indwelling medical device.
BACKGROUND OF THE INVENTION
There are many instances in clinical medicine where detecting the location of a medical tube within a patient is important. For example, when positioning feeding tubes through the mouth or nose of a patient. it is essential that the end of the feeding tube pass into the patient's stomach, and that it does not “curl up” and remain in the esophagus. If the end of the feeding tube is not properly positioned within the stomach, aspiration of the feeding solution into the patient's lungs may occur. In addition to feeding tubes, a variety of other medical tubes require accurate positioning within a patient's body, including dilating tubes to widen an esophageal stricture, tubes for measuring pressure waves in the stomach and esophagus of a patient who is suspected of having esophageal motor disorders, Sengstaken-Blakemore tubes in the stomach and esophagus of a patient to control bleeding from varicose veins in the esophagus, colonic decompression tubes in the colon of a patient to assist in relieving distention of the colon by gas, urologic tubes in the bladder, ureter or kidney of a patient, and vascular tubes in the heart or pulmonary arteries of a patient.
Currently, the location of a medical tube within the body of a patient is routinely detected by the use of imaging equipment, such as a chest or abdominal X-ray. However, such a procedure requires transportation of the patient to an X-ray facility or, conversely, transportation of the X-ray equipment to the patient. This is both inconvenient and costly to the patient, and is particularly stressful in those instances where the patient repeatedly and inadvertently removes a medical tube, such as a feeding tube, thus requiring repeated reinsertion and X-rays.
Prior attempts at detecting the location of medical tubes within a patient have met with only limited success. For example, in U.S. Pat. No. 5,099,845 to Besz et al., a transmitter is located within a catheter, and an external receiver, tuned to the frequency of the transmitter, is used to detect the location of the catheter within the patient. This approach, however, requires either an external or internal power source to drive the transmitter. An external power source adds significant risk associated with shock or electrocution, and requires that electrical connections be made prior to positioning of the catheter within the patient. An internal power source, such as a battery, must be relatively small and can only provide power to the transmitter for a limited time. This precludes long-term detection of the catheter's location, and poses additional risks associated with placing a battery internally in a patient, such as the risk of battery leakage or rupture. In addition, the transmitter is relatively complex, and requires an active electronic circuit (either internal or external to the catheter), as well as the various wires and connections necessary for its proper function. Lastly, the signal produced by the transmitter is attenuated differently by different body tissues and bone. This attenuation requires adjustments in the transmitter's signal strength and frequency depending on the location of the catheter within the patient's body.
A further attempt at detecting the location of medical tubes within a patient is disclosed in U.S. Pat. No. 4,809,713 to Grayzel. There, an electrical cardiac-pacing catheter is held in place against the inner heart wall of a patient by the attraction between a small magnet located in the tip of the pacing catheter and a large magnet located on (e.g., sewn into) the patient's chest wall. An indexed, gimbaled, three-dimensional compass is used to determine the best location for the large magnet. The compass' operation relies upon the torque generated by the magnetic forces between the small magnet and the magnetized compass pointer in order to point the compass towards the small magnet. However, this compass will simultaneously try to orient itself to the earth's ambient magnetic field. Because of this, the forces between the small magnet and the magnetized compass pointer at distances greater than several centimeters are not strong enough to accurately orient the compass towards the small magnet. Furthermore, although the compass aids positioning of the large magnet, positioning of the small magnet, and hence the pacing catheter, still requires the use of imaging equipment, such as X-ray or ultrasound.
For the foregoing reasons, there is a need in the art for a medical tube, apparatus and method for detecting the location of the medical tube within the body of a patient which avoids the problems inherent in existing techniques. The medical tube, apparatus and method should provide for the detection of the medical tube at distances ranging from several centimeters to several decimeters, should not require the medical tube to have an internal or external power source, and should obviate the need to independently verify positioning of the medical tube with imaging equipment.
SUMMARY OF THE INVENTION
The present invention is embodied in a system and method for the detection of a position of a magnet associated with an indwelling medical device. The system includes a plurality of magnetic sensors that each generate a set of electrical signals as a function of the magnetic field strength generated from the magnet and a direction from the sensor to the magnet. A processor calculates a predicted position of the magnet in a 3-dimensional space and calculates a predicted value related to magnetic field strength of the magnet at the predicted location. The processor calculates a measured value related to the magnetic field strength of the magnet and determines the location of the magnet in the 3-dimensional space based on the difference between the predicted value and the measured value. In one embodiment, the processor performs an iterative process of calculating the predicted position and predicted value related to the magnetic field and alters the predicted position based on the difference between the predicted value and the measured value. The iterative process continues until the predicted value and the measured value match each other within a predetermined tolerance. The system also includes a display to provide a visual display of data related to the position of the magnet in the 3-dimensional space.
In one embodiment, the display is a two-dimensional display indicating the position of the magnet with respect to the housing. A depth indicator portion of the two-dimensional display provides an indication of the distance of the magnet from the housing. The display can include a visual indicator to assist the care giver in centering the housing over the magnet. The sensors themselves can be selected from a group of magnetic sensors comprising Hall-effect sensors, flux-gate sensors, wound-core inductive sensors, squid sensors, magneto-resistive sensors, and nuclear precession sensors.
The magnet has a magnetic dipole moment indicative of the orientation of the magnet. The sensors can detect the magnetic dipole moment and provide a visual indication on the display to indicate the magnet orientation.
In one embodiment, each sensor comprises first, second, and third sensor elements arranged in an orthogonal fashion to detect magnetic field strength in three dimensions corresponding to the first, second, and third orthogonally arranged sensor elements.
REFERENCES:
patent: 3649908 (1972-03-01), Brown
patent: 3757773 (1973-09-01), Kolin
patent: 3847157 (1974-11-01), Caillouette et al.
patent: 4063561 (1977-12-01), McKenna
patent: 4244362 (1981-01-01), Anderson
patent: 4249536 (1981-02-01), Vega
patent: 4317078 (1982-02-01), Weed et al.
patent: 4402310 (1983-09-01),
Golden Robert N.
Haynor David R.
Somogyi Christopher P.
Donohue Michael J.
Lateef Marvin M.
Lucent Medical Systems, Inc.
Seed IP Law Group PLLC
Shaw Shawna J.
LandOfFree
Method to determine the location and orientation of an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method to determine the location and orientation of an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method to determine the location and orientation of an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2527637