Geometrical instruments – Indicator of direction of force traversing natural media – Borehole direction or inclination
Reexamination Certificate
2001-07-19
2003-03-11
Fulton, Christopher W. (Department: 2859)
Geometrical instruments
Indicator of direction of force traversing natural media
Borehole direction or inclination
C033S0010HH, C033S313000, C073S152430, C175S024000, C324S346000
Reexamination Certificate
active
06530154
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to method and apparatus for drilling a wellbore in a sub-surface formation, to enable avoidance of physical interference with an existing magnetic source, or magnetically responsive source such as well casing in the formation; more particularly, it concerns comparison and/or use of information derived from an existing magnetic source in the formation, from a wellbore plan, and from an actual wellbore being drilled, to enable such avoidance.
In the prior art, effort has been directed to the reduction of systematic magnetic survey inaccuracies. Corrections for drillstring interference and other systematic errors are disclosed by Engebretson et al. in U.S. Pat. No. 5,155,916. Similarly, U.S. Pat. No. 5,452,518 discloses a method to reduce along axis interference. U.S. Pat. No. 5,564,193 discloses a method wherein the transverse, as well as axial component of drillstring interference is determined by a series of magnetic measurements, with the drillstring displaced angularly about its axis. U.S. Pat. No. 5,398,421 discloses a method whereby a sequence of longitudinally spaced shots, having differing rotation angles along the wellbore are combined, in a regression analysis to determine a local perturbation in the earth magnetic field associated with the drillstring.
U.S. Pat. No. 5,435,069 to Nicholson discloses a method whereby multiple vector magnetic and gravity measurements along a curved wellpath may be used to determine a perturbating magnetic field associated with the drilling or logging string.
The prior art also discloses methods to determine the location and attitude of a source of magnetic interference U.S. Pat. No. 3,725,777 describes a method to determine the earth's field from a magnetic compass and total field measurements, and then calculate the deviations, due to the external source of magnetic interference. The magnetic field of a long cylinder is then fitted to the magnetic deviations in a least-squares sense. The method requires that the magnetic field measurements be taken on a straight wellpath.
U.S. Pat. No. 4,458,767 describes a method by which the position of a nearby well is determined from the magnetic field produced by magnetized sections of casing. There is no description of a method by which the earth field is removed from the magnetic measurements.
European Patent Application GB9409550 discloses a graphical method for locating the axis of a cylindrical magnetic source from borehole magnetic field measurements acquired at intervals along a straight wellbore.
U.S. Pat. No. 5,512,830 described a method whereby the position of a nearby magnetic well casing is determined by approximating the static magnetic field of the casing by a series of mathematical functions distributed sinusoidally along the casing. In an earlier paper (Jones et al.), a method was described whereby the static magnetic field of a casing was approximated by an exponential function.
In the above references, no method is described whereby the earth field is determined along a wellpath having unknown and possibly changing azimuth, so as to determine local variations in the magnetic field vector along the wellpath.
U.S. Pat. Nos. 5,230,387 and 4,072,200 disclose a method whereby the magnetic field gradient is measured along a wellbore for the purpose of locating a nearby magnetic object. The gradient is calculated by measuring the difference in magnetic field between two closely spaced measurements; and because the earth field is constant over a short distance, the effect of the earth field is removed from the gradient measurement. The location and attitude of source external to the drillstring can then be determined by comparison with theoretical models of the magnetic field gradient produced by the external source.
The above efforts to improve magnetic surveys and locate sources of magnetic interference external to the wellbore evidence the need for improvements, which are now provided by the present invention.
The specific objective of the present invention is to provide a simple and inexpensive method to assure avoidance of a substantially adjacent known magnetic source using measurements made during a normal measure-while-drilling operation.
The need for the present invention is clear from the increase in closely spaced or “in-fill” drilled wellbores to maximize production from existing offshore platforms. In-fill drilling is also used to place wells so as to obtain production from areas of a reservoir that may have been by-passed during earlier operation.
SUMMARY OF THE INVENTION
It is a major object to provide a method or methods, as well as apparatus, to meet need for the invention as referred to, and as will be referred to herein.
The present invention provides an improvement in the art of drilling closely spaced wells. In the prior art, collision between closely spaced wells is avoided by carefully estimating the errors associated with wellborn surveys in planning new wells, with hope that the probability of collision due to inaccurate survey data below an acceptable threshold. It is typical however, that survey errors prevent the drilling of wells with separations less than 25 feet. Because survey errors are cumulative, deep wells cannot typically be drilled to separations less than 100 feet, to avoid risk of collision.
The present invention permits drilling of wells to separations limited only by the advance notice required by the drilling apparatus to steer away and avoid collision with the proximate well.
Basically, the method of the invention is employed in the drilling of a wellbore in a formation to enable avoidance of an existent magnetic source in the formation, and includes the steps:
a) obtaining first information indications of the existing path or trajectory of the existent magnetic source, in the underground formation,
b) obtaining second information indications of a wellplan that includes a planned path or trajectory for a wellbore to be drilled, avoiding collision with the path or trajectory of the existent magnetic source,
c) using the first and second information indications to derive expected values corresponding to one or more parameters of the magnetic field to be encountered along the planned wellbore to be drilled,
d) measuring existing magnetic field components actually encountered along the wellbore during drilling, and deriving therefrom actual values of one or more magnetic field parameters that correspond to the expected values,
e) and comparing the actual values with the expected values, to determine the existence of deviation of the drilled wellpath from the planned wellpath.
In one basic embodiment of the invention, a magnetic sensor package, usually the MWD (measurement while drilling) survey sensors, is deployed in the bottom hole assembly (BHA) of the drillstring. In addition to making the conventional MWD measurements, the MWD sensor package is used to compare the measured total magnetic field magnitude with an expected value, computed from a magnetic model of the existent casing string.
In a region remote from any wellbore casings or other sources of interference, the magnetic sensor package measures the components of the earth's magnetic field, and from these measurements the magnetic azimuth of the axis of the drillstring can be determined.
In the proximity of an existing wellbore casing, the remanent and induced magnetic fields of the casing string produce a magnetic field along the wellbore path of the magnetic sensor package. This additional magnetic field adds vectorially to the earth's magnetic field in a complex fashion that depends on the relative position and attitudes of casing string and wellpath.
In a basic embodiment of the present invention, a calculation is made of the maximum expected total magnetic field along the wellpath by means of a magnetic model representing the maximum likely magnetic pole strengths on the casing string, the known path of the casing string, and the planned or measured path of the sensor package.
The measured total magnetic fie
Fulton Christopher W.
Haefliger William W.
Scientific Drilling International
LandOfFree
Method to detect deviations from a wellplan while drilling... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method to detect deviations from a wellplan while drilling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method to detect deviations from a wellplan while drilling... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3059459