Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing
Reexamination Certificate
2001-03-05
2003-09-02
Picard, Leo (Department: 2125)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Product assembly or manufacturing
C700S112000, C700S216000, C705S002000
Reexamination Certificate
active
06615092
ABSTRACT:
TECHNICAL FIELD
The present disclosure generally relates to manufacturing and, more particular to a method, system and facility for controlling resource allocation within a manufacturing environment.
BACKGROUND OF THE DISCLOSURE
Many years ago, manufacturers learned that, when building sufficiently large quantities of identical products, assembly lines could be used to increase the rate of production and decrease the per-unit production costs. In an assembly line, the assembly process is divided in a series of processing steps through which the work-in-process moves to result in the end product. These steps may be optimized, and once the manufacturing system becomes operational it will build a number of products with the same configuration using the optimized steps.
Assembly lines are typically used in a build-to-stock production model, where large quantities of identical products are manufactured in anticipation of forecasted demand. The manufactured products are then warehoused until that demand is realized. Build-to-stock manufacturing systems are therefore primarily suited to markets in which manufacturers can accurately predict customer demand.
In many markets, however, predicting customer demand is risky, at best. For example, in the market for computer systems and related items, technological improvements are realized so frequently and component prices change so rapidly that it is difficult to accurately predict how large the market for any particular product will ultimately be. As a result, when manufacturers in industries like information technology utilize the build-to-stock model, those manufacturers frequently find themselves with stocks of manufactured goods that are difficult or impossible to market at a profit (i.e., with stale inventory).
A contrasting model of production that helps manufacturers avoid the stale-inventory problem is the build-to-order model. According to the build-to-order model, each product is assembled only after a customer has ordered that particular product. One of the disadvantages traditionally associated with the build-to-order model, however, is that more time is required to fill orders, in that products must be manufactured, not simply taken from stock. Another disadvantage is that build-to-order manufacturing systems are typically less efficient than build-to-stock manufacturing systems, which drives up the cost of products that are built to order. Accordingly, build-to-order systems have typically been utilized in markets for luxury items, such as tailored clothing, and markets in which a paucity of manufacturers leaves consumers with little choice but to bear the high prices and delays that are generally passed down by build-to-order manufacturers.
Some manufacturers have attempted to minimize the delays associated with the build-to-order model by maintaining a significant inventory of the materials required for production (e.g., the components that are assembled to create the finished goods). Simply carrying such an inventory, however, imposes costs on manufacturers, including the costs associated with warehousing the material. Furthermore, in markets where product innovations occur rapidly, such material oftentimes become stale.
For example, in contemporary times, the market for computer systems (including, without limitation, mini-computers, mainframe computers, personal computers, servers, work stations, portables, hand held systems, and other data processing systems) has been marked by high and increasing rates of product innovation. Further, to manufacture, for example, a typical personal computer, many different components are required, including a processor, memory, additional data storage (such as a hard disk drive), a number of peripheral devices that provide input and output (I/O) for the system, and adapter cards (such as video or sound cards) for communicating with the peripheral devices. Each of those components is also typically available in many different variations. In such markets, even if using the build-to-order model, manufacturers risk significant losses when carrying significant inventories of material.
Also, it is difficult to optimize build-to-order manufacturing facilities in terms of labor requirements and space requirements, as such facilities must be able to produce of a wide variety of products. However, in markets where many manufacturers are competing for customers, such as the computer system market, any reduction in production costs that does not decrease product quality is an important improvement.
Among the cost-saving measures that a producer may employ is to follow the direct-ship model, in which the manufacturer avoids middlemen such as distributors and retailers by accepting orders directly from and shipping products directly to customers. However, additional costs are borne by a manufacturer that provides a direct-ship option, in that the manufacturer must provide distribution facilities, in addition to providing the manufacturing facilities.
SUMMARY OF THE DISCLOSURE
In accordance with teachings of the present disclosure, a method, system and facility are described for controlling resource allocation within a manufacturing environment. According to one aspect, a manufacturing facility employing dynamic allocation of resources for assembling and shipping computer based systems is disclosed. The facility includes a centralized information system communicatively coupled with selective portions of the manufacturing facility and operable to aggregate information associated with manufacturing computer systems. The facility further includes a work in process (WIP) profile associated with the selective portions of the facility and operable to provide information in substantially real-time to the centralized information system. The facility further includes at least one user interface displayed within a control center of the manufacturing facility and operable to enable allocation of resources within the selective portions of the manufacturing facility.
According to another aspect of the present disclosure, a system for providing a control center for a manufacturing facility is disclosed. The system includes a plurality of information sources operably associated with manufacturing products within the manufacturing facility. A user interface of the system displays selective information associated with portions of the manufacturing facility within a control center operable to manage production within the manufacturing facility. The system further includes a resource allocator operably coupled to the control center and the plurality of information sources and the resource allocator is operable to monitor work in process within the manufacturing facility.
According to a further aspect of the present disclosure, a method for controlling allocation of resources within a manufacturing facility is disclosed. The method includes determining a WIP profile associated with one or more areas within the manufacturing facility and accessing one or more databases to provide an aggregated information source to be displayed within a user interface of a control center. The method further includes determining available capacity based on shipping and scheduling information for the manufacturing facility and identifying an order release criteria limiting shipment of an order, the limiting associated with the WIP profile.
The present disclosure relates to a manufacturing facility that provides build-to-order products and direct shipment of products to customers. More specifically, the present disclosure relates to a manufacturing facility that is constructed and operated in such a manner as to enjoy numerous benefits, relative to prior art manufacturing facilities, including the benefit of reduced production costs. In addition, the present disclosure relates to systems and methods that may be utilized to advantage in a distribution facility, independent of the manufacturing process.
REFERENCES:
patent: 3792785 (1974-02-01), Weir
patent: 3796327 (1974-03-01), Meyer et al.
patent: 4310276 (1982-01-01), Castagnoli
patent:
Bickley Branden Clark
Hunt Brian J.
Pape Mark Allen
Widis Nicholas J.
Williams Richard M.
Baker & Botts L.L.P.
Dell Products L.P.
Frank Elliot
Picard Leo
LandOfFree
Method, system and facility for controlling resource... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method, system and facility for controlling resource..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, system and facility for controlling resource... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3097561