Method system and apparatus for telecommunications control

Multiplex communications – Pathfinding or routing – Switching a message which includes an address header

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S522000

Reexamination Certificate

active

06201812

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to telecommunications and more specifically to communications control processing in telecommunications signaling.
2. Description of the Prior Art
Telecommunications systems establish a communications path between two or more points to allow the transfer of information between the points. The communications path typically comprises a series of connections between network elements. The network elements are typically switches. Switches provide the primary means where different connections are associated to form the communications path. Communication control is the process of setting up a communications path between the points. Communication control comprises the selection of network elements such as switches or other devices which will form part of the communications path. Communication control also comprises the selection of the connections between the network elements. Together, the network elements and connections which are selected make up the communications path. Typically, a plurality of different network element and connection selections may be possible for any one communications path between points.
Switches control these selections. Switches select the connections that comprise the communications path. Switches also select the network elements which form an actual part of that communications path. By selecting these network elements, a switch is often selecting the next switch that will make further selections. Switches accomplish communication control.
The correspondence between communication control and a communications path is well known in the art. A common method used in communication control is signaling among switches. One method by which a first point requests a communications path to a second point is by signaling a first switch with an off-hook signal followed by dual tone multifrequency (DTMF) signals. The first switch will typically process those signals and will select other network elements such as a second switch. The first switch signals the second switch and establishes a connection between the switches. The second switch then selects the next network element, signals that network element, and establishes a connection to that network element. This process is well known in the art. The connections and signaling thus proceed from switch to switch through the network until a communications path is established between the first and second points.
Some networks transmit signaling information from the switches to other signaling devices. In these cases, the switches typically must be modified through the use of Signaling Point (SP) hardware and software in order to convert the language of the switch into the language used by these other signaling devices. One signaling device is a Service Control Point (SCP). An SCP processes signaling queries from a switch. An SCP only answers a switch query after the switch has become a part of the communications path. SCPs support the communication control which is directed by the switch.
Additionally, signaling may pass through other signaling devices, such as Signal Transfer Points (STPs), which route the signaling. An STP is typically a high-speed packet data switch which reads portions of the signaling information and either discards or routes the information to a network element. The signal routing operation of the STP is based on the signaling information that is specified by the switch. STPs route signaling information, but STPs do not modify or otherwise process the signaling information. An example of the above described system is Signaling System #7 (SS7) technology. Thus, signaling devices only are used to support switches in communication control.
Broadband systems, such as Asynchronous Transfer Mode (ATM) may use extensions of existing SS7 signaling to allow ATM switches to direct communication control. However, broadband systems may also utilize different communication control methods. ATM switches may transfer ATM cells which contain signaling to other ATM switches. As with the other switch types however, ATM switches also perform the dual task of communication control and forming a part of the communications path.
Some switches use API switching which employs remote central processing units (CPUs). These switches only receive switch information from the remote CPUs and not signaling. The protocols used for information transfer between the switch and the remote CPU are proprietary among vendors and are incompatible between the switches of different vendors.
Some digital cross-connect (DCS) equipment employ centralized control systems. These systems, however, only provide relatively static switching fabrics and do not respond to signaling. Instead of establishing connections in response to signaling, DCS cross-connections are established in response to network configuration needs. Network elements and connections are preprogrammed into the network and are not selected in response to signaling from a point outside of the network.
At present, while communication control and the communications path are distinct from one another, both are dependent on the switch. The performance of both of these tasks by switches places limitations on a telecommunications network. One such limitation can be illustrated by one difficulty encountered in combining narrowband networks and broadband networks. Broadband networks are advantageous for data transmission because virtual permanent connections can be mapped through a network and bandwidth allocated on demand. Narrowband switches are advantageous for voice, in part, due to the many features which have been developed in conjunction with these switches. These features benefit both the user and the network through added efficiency and quality. Examples are “800” platforms, billing systems, and routing systems. However for broadband networks, the development of these features is incomplete and does not provide the functionality of current narrowband features. Unfortunately, narrowband switches do not have the capacity, speed, and multimedia capabilities of broadband switches. The resulting combination is separate overlay networks. Typically, narrowband traffic remains within the narrowband network, and broadband traffic remains within the broadband network.
Any intelligent interface between the two networks would require that signaling information be transmitted between narrowband switches and broadband switches. At present, the ability of these switches to signal each other is limited. These switch limitations create a major obstacle in any attempt to interface the two networks. It would be advantageous if narrowband and broadband networks could interwork through an intelligent interface to establish a communications path between points. At present, the interface between narrowband and broadband networks remains a rigid access pipe between overlay systems.
The reliance on switches to both perform communication control and to form the a part of the communications path results in impediments to developing improved networks. Each time a new network element, such as a broadband switch, is introduced, a telecommunications network may be forced to delay integrating the network element into its network until standardization of signaling and interface protocols are developed for the switches. At present, there is a need for a portion of the communication control processing to be independent of the switches that form a part of the communications path.
SUMMARY
An embodiment of the present invention solves this need by providing a method, system, and apparatus for communication control processing that is located externally to the switches that make the connections. The method includes receiving a first signal into a processor which is located externally to the switches in a network comprised of network elements. The processor selects a network characteristic in response to the first signal. The processor then generates a second signal reflecting the network characteristic and transmits the second signal to at l

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method system and apparatus for telecommunications control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method system and apparatus for telecommunications control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method system and apparatus for telecommunications control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2538340

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.