Method, system and apparatus for monitoring and adjusting...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Mechanical control system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S266000, C236S049300, C454S229000, C702S023000

Reexamination Certificate

active

06711470

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methods, systems and apparatus for monitoring and adjusting indoor air quality. More specifically, the present invention relates to methods and apparatus for monitoring and adjusting indoor air quality by sensing and removing indoor air contaminants.
2. Present State of the Art
Heating, Ventilation, and Air Conditioning (HVAC) systems can be designed to control the temperature and humidity of indoor air by combining fresh outside air with recirculated inside air. This process is tempered by air heating and cooling costs. The quality of the indoor air is usually determined by the temperature and humidity of the air. Typically, the ratio of outside air to inside air is fixed and adjustments to the ratio are usually made manually when there is concern about the quality of the indoor air.
HVAC systems relying on the manual adjustment of the ratio between outside air and recirculated indoor air are not economically optimized and have the potential to subject personnel to unknown hazardous contaminants. For example, when the indoor air quality is very good, the HVAC system draws and conditions more outside air than is needed, which increases cost because the excess outside air has to be heated and conditioned. When air quality is poor, not enough outside air is drawn into the system resulting in health risks to personnel, which in turn leads to increased costs due to overexposed personnel, loss of productivity, and increased facility maintenance.
More advanced HVAC system have the added ability to sense particulates, Volatile Organic Compounds (VOC), and carbon dioxide but do not address hazards from exposure to a wide range of contaminants. The ability to sense particulates and carbon dioxide has improved the efficiency of HVAC systems, but not all problems have been solved. In fact, numerous instances of workplace problems related to the quality of indoor air have been recorded. The recirculation of indoor air can permit odors and toxic gases to concentrate over time and ultimately leads to unhealthy indoor air. The sources of these contaminants can include: facility infrastructure such as carpet, paints, and furniture; electrical equipment such as photocopiers, video monitors and ovens; cleaning equipment and supplies; mechanical equipment fuels, lubricants and combustion byproducts; the use of tobacco and perfumes by personnel; and natural microbes such as those found in drains, vents and crawl spaces.
Most of the recorded incidents related to poor indoor air equality were attributed to air contaminated with volatile organic compounds (VOC) from paints, adhesives and polishes along with nitrogen containing compounds such as nitric acid, nitrogen dioxide, and ammonia. These incidents occur because most HVAC systems are maintained by manually altering the indoor airflow and recycling rates based on personal observations and experience with odors, hazes, and weather conditions. However, none of these systems provide a mechanism to recognize when non-visible or non-odorous contaminants are present. If the control of any of these rates is controlled automatically, it is typically based on some combination of humidity, temperature, smoke and carbon dioxide. Routine monitoring and control of regulated contaminants specified in the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standard 62—and its revisions is rare. Further, these systems do not take into account the status or quality of the outside air being introduced into the system.
The Clean Air Act of 1970 required the Environmental Protection Agency (EPA) to establish National Ambient Air Quality Standards (NAAQS) for the six most significant air pollutants in the outdoor environment: sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone, lead, and particulate matter with a diameter less than or equal to 10 micrometers. Of these pollutants, sulfur dioxide, nitrogen dioxide, carbon monoxide and ozone are colorless at very low concentrations and significantly and adversely affect human health. Current HVAC systems usually presume the outside air to be free of contaminants and do not monitor or make adjustments for these or other contaminants.
In addition to the contaminants and pollutants found in outside air, many other contaminants can be the cause of harmful indoor air. Currently, general indoor air quality is not regulated, but many agencies have proposed standards which may serve as guidelines. Standards have been proposed by the U.S. Department of Labor's Occupational Safety and Health Administration (OSHA), the World Health Organization (WHO), and ASHRAE. The pollutants and contaminants these standards propose regulating include: carbon dioxide, carbon monoxide, formaldehyde, nitrogen dioxide, ozone, radon and progeny, sulfur dioxide, and a number of VOCs. In addition to these contaminants, many other chemicals are regulated by OSHA in work environments to control long and short-term exposures.
As noted above, HVAC manufacturers typically purchase sensors to monitor temperature, smoke, humidity and carbon dioxide. Providing additional sensors to monitor all potentially harmful contaminants is rare and expensive because of the cost of providing sensors for each contaminant. The addition of charcoal filters, water scrubbers, and reductant/oxidant scrubbers as a means of ensuring good indoor air is also impractical because they have a limited capacity that is exhausted rapidly during continuous operation. In other words, it is impractical to provide a sensor or filter for each contaminant and pollutant. There remains a need, however, to sense poor indoor air quality and make adjustments to the indoor air such that human health is preserved and economic costs are lowered.
OBJECTS AND SUMMARY OF THE INVENTION
The present invention has been developed in response to the present state of the art, and in particular, in response to these and other problems and needs that have not been fully or completely solved by currently available HVAC systems for monitoring and adjusting the quality of indoor air. Thus, it is an overall object of the present invention to provide a method, system and apparatus for reliably monitoring and adjusting the quality of indoor air.
It is therefore an object of one embodiment of the present invention to monitor abnormal conditions indicative of unhealthy air.
It is another object of one embodiment of the present invention to monitor and adjust the quality of indoor air.
It is a further object of one embodiment of the present invention to minimize heating and cooling costs.
It is an additional object of one embodiment of the present invention to protect humans from over exposure to hazardous air pollutants.
It is another object of one embodiment of the present invention to identify contaminants and pollutants in the indoor air.
It is a further object of one embodiment of the present invention to infer the identity of contaminants and pollutants in the indoor air.
Yet another object of one embodiment of the present invention is to determine when alternative air supplies or mitigation processes should be used to provide healthy indoor air.
In summary, the foregoing and other objects are achieved by providing a method and apparatus for monitoring and adjusting the quality of indoor air. In one embodiment of the present invention a sensor array is provided which is capable of sensing a variety of contaminants. Each contaminant or mixture of contaminants may cause the individual sensors in the sensor array to produce a particular sensor signature or output. Further, each contaminant also causes the sensors to produce an array signature. Both the sensor signatures and the array signatures can be indicative of particular contaminants.
In this manner, personnel can be protected from over exposure to toxic substances and the costs associated with heating, cooling, and humidifying the air can be minimized. Another embodiment also monitors the outside air to ensure that harmful contaminant

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method, system and apparatus for monitoring and adjusting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method, system and apparatus for monitoring and adjusting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method, system and apparatus for monitoring and adjusting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3290687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.