Method of using critical dimension mapping to qualify a...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S492220, C430S005000

Reexamination Certificate

active

06345210

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to photolithography techniques which are used during the fabrication of semiconductor devices. More specifically, the present invention relates to a technique which uses multiple mappings of a critical dimension of selected features that are formed on wafer during formation of integrated circuits (IC), to enable optical proximity correction in an efficient manner and with particular regard to mitigating effects which are encountered during the various steps which are carried during the constructive processes.
2. Description of the Related Art
The minimum feature sizes of integrated circuits (ICs) have been constantly shrinking. Commensurate with this size reduction, various process limitations have made IC fabrication more difficult. One area of fabrication technology in which such limitations have appeared is photolithography which involves selectively exposing regions of a resist coated silicon wafer to a radiation pattern, and then developing the exposed resist in order to selectively protect regions of wafer layers (e.g., regions of substrate, polysilicon, dielectric or the like).
An integral component of a photolithographic apparatus is a “reticle” which contains a pattern corresponding to features at a layer in an IC design. These devices typically includes a transparent glass plate covered with a patterned light blocking material such as chromium. The reticle is placed between a radiation source producing radiation of a pre-selected wavelength and a focusing lens which forms part of a optics arrangement of a “stepper” apparatus. Located beneath the optics in which the reticle is disposed, is a table. The table is provided with a vacuum clutch or the like and is operatively connected with servo mechanisms to be movable in three mutually opposed directions with respect to optical arrangement in which the reticle is disposed. This allows a resist covered wafer which is supported on the table to be selectively moved with respect to the optics so that the resist coating can be repeatedly imprinted with an image produced by the reticle.
When the radiation from the radiation source is directed onto the reticle, light passes through the uncovered glass portions and projects onto the resist covered silicon wafer. In this manner, an image which is produced by the reticle is imprinted onto the resist.
The resist or photoresist as it is sometimes called, is provided as a thin layer of radiation-sensitive material that is spin-coated over the entire silicon wafer surface. The resist material is classified as either positive or negative depending on how it responds to light radiation. Positive resist, when exposed to radiation becomes more soluble and is thus more easily removed in a development process. As a result, a developed positive resist contains a resist pattern corresponding to the dark regions on the reticle. Negative resist, on the other hand, becomes less soluble when exposed to radiation. Consequently, a developed negative resist contains a pattern corresponding to the transparent regions of the reticle. For simplicity, the following discussion is in connection with positive resists, it being understood that negative resists may be substituted therefor given that the appropriate adjustments are made. For further information on IC fabrication and resist development methods, reference may be made to a book entitled Integrated Circuit Fabrication Technology by David J. Elliot, McGraw Hill, 1989.
One problem associated with photolithography is that light passing through a reticle tends to be refracted and scattered by the chromium edges. This causes the projected image to exhibit some rounding and other optical distortion. The problems become especially pronounced in IC designs having feature sizes near the wavelength of light used in the photolithographic process.
To overcome this problem, a reticle correction technique known as optical proximity correction (“OPC”) has been developed. Optical proximity correction involves adding dark regions to and/or subtracting dark regions from a reticle design at locations chosen to resolve the distorting effects of diffraction and scattering. Typically, OPC is performed on a digital representation of a desired IC pattern. First, the digital pattern is evaluated using software to identify regions where optical distortion is apt to result. Optical proximity correction is then applied to compensate for the distortion. The resulting pattern is ultimately transferred to the reticle glass.
While such effects pose relatively little difficulty in layouts with large feature sizes (e.g., layouts with critical dimensions above about 1 micron), they can not be ignored in layouts having features less than about 1 micron.
The OPC process is generally performed by scanning a digital version of an IC layout design to identify feature dimensions, interfeature spacing, feature orientation, etc. The scanning process may proceed across the IC layout design in a rasterized fashion to cover the entire pattern. In some IC layout designs, it may also be necessary to conduct raster scans in the two or more directions (e.g., horizontal, vertical, and one or more diagonal directions). In some cases, the OPC computations may include generating a detailed computer model of a reticle image known as a Fast Aerial Image of Mask (FAIM). This image is then itself evaluated to determine where to make reticle corrections.
However, a drawback is encountered in that the process of performing OPC on modern IC layout designs having many features can be computationally intensive. In fact, OPC can sometimes be too great for even the most advanced computational resources. Obviously, when FAIM models are used, the computational difficulty increases significantly.
Further, one specific type of optical distortion requiring some form of correction is called “reflective notching.” This form of distortion arises not from the interaction of light with the reticle pattern itself, but from the interaction of light with structures on the wafer surface. Specifically, light directed onto topographical variations introduced on a wafer surface at certain stages in the IC fabrication process (e.g., field oxide formation) scatters and reflects. As a result, illuminated line patterns crossing over a field oxide/active region interface or other topographically varying surface structure produces notches (reflective nothing).
This reflective notching, of course, tends to degrade integrated circuit performance. For example, the current carrying characteristics of a polysilicon line will deviate from design, in these narrow regions, potentially leading to hot spots in the polysilicon line. In some cases, such problems may render the resulting integrated circuit unusable. The speed and performance of a complex circuit, such as a microprocessor is, of course, adversely effected by such imperfections.
Accordingly, despite quite sophisticated advances in reticle inspection/correction, it is necessary to achieve further development in reticle adjustment and design in order to overcome the problems such as the above mentioned reflective notching.
SUMMARY OF THE INVENTION
The present invention is based on a technique wherein mapping is carried out at each of a select number of production stages, and wherein critical dimension (CD) data, which is accumulated during each of the mappings, is used to determine what adjustments can be made to reticle which is used in the production, to ensure that the closest possible adherence to the design requirements is achieved.
In other words, a feedback control data base is enabled. For example, mapping of results of the etching are examined and a line width or corner is too great or too small, or the configurations of given features are not as good as is required to assure the best performance of the device (e.g., features necessary to optimize the speed performance of a microprocessor for example) then determined what adjustments can be made to the process at each of the stag

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of using critical dimension mapping to qualify a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of using critical dimension mapping to qualify a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of using critical dimension mapping to qualify a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954876

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.