Method of using a retrofittable severe duty seal for a shaft

Seal for a joint or juncture – Process of dynamic sealing – Peripheral radially sealing flexible projection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C277S402000, C277S562000, C277S572000

Reexamination Certificate

active

06464228

ABSTRACT:

TECHNICAL FIELD
The present disclosure is related to the field of seals for sealing dynamic shafts, generally, and methods of using the same. The methods and apparatus are particularly related to the field of unitary combination lip and sleeve seals. More specifically, this is a method for using an improved seal adapted for use in severe duty applications including construction equipment, agricultural machinery, track driven vehicles, and other applications where oil or grease must be held in contact with dynamic shaft assemblies. This seal and other seals of this type must also operate as excluder seals to keep lubricated surfaces free from corrosives, acids, other chemicals, dirt, mud, dust, abrasives, water and other contaminants. Even more particularly, this seal incorporates design features that enhance performance (compared to usual original equipment seals) when installed on shafts that have been slightly damaged by normal wear. Most specifically, this seal can be used as a roller or idler seal for track driven vehicles.
BACKGROUND
The method of using the present seal structure yields a very important benefit that has eluded other persons skilled in the art. It can be retrofitted to existing, worn machinery to enhance the protection of costly lubricated machine components. This seal can replace existing seals, and the performance of this seal exceeds that of all other standard-sized, commercially available, conventional, lip and sleeve type seals. The only commercially available type of seal with performance comparable to this embodiment is the dual cone face seal. It is known by those in the art that dual cone face seals have disadvantages that significantly restrict their use. The seal disclosed here overcomes the two major inherent disadvantages of dual cone face seals—overall width and high cost.
Conventional unitized lip and sleeve seals are much thinner than dual cone face seals. Since this seal can be installed as a direct replacement for ordinary seals, it can be specified and used without making any modifications to the design of an existing machine. The shaft, the bore, and the housing in which the seal operates are identical whether the present seal or conventional seals are used. Wherever dual cone face seals are desired, the machine must have been originally designed specifically for their use. They cannot fit all of the machine locations because of design constraints.
However, the availability of a seal having the superior performance characteristics of an embodiment according to the present disclosure in a package the size of ordinary seals gives additional freedom to designers of heavy machinery and severe duty assemblies. Many new design possibilities are made available by this seal because of the unitized style of the seal and the small width requirements as compared to dual cone face seals.
The selling price a seal according to the present disclosure is substantially less than the selling price of dual cone face seals. A preferred embodiment of the present disclosure is expected to be two to three times the cost of a conventional seal. In some applications, such as crawler vehicles, which currently use dual cone face seals, a single machine will typically require 40 to 60 roller seals, each of which is subjected to extremes of heat, cold, moisture, dust, abrasives, acids and alkalis. Replacing the 40 to 60 dual cone face seals with seals according to the present disclosure will result in substantial savings without deviating from quality.
An important benefit of the method of using the seal disclosed is that it can create permanently lubricated shaft and bearing assemblies that can withstand severe use. The method of using this seal may enable equipment manufacturers to improve the performance of their machinery by reducing maintenance requirements. It is believed that existing vehicles and other machines can be retrofitted advantageously by replacing the original regreasable seals with this new permanently lubricated seal. The lifetime of the new seal can last substantially longer than current lip seals. It is to be understood, however, that the present seal can be used to seal in either oil or grease and to substantially exclude all environmental contaminants that do not attack the materials from which the seal is manufactured.
It is an object of the invention to accomplish the foregoing and to teach the structure and method of using a retrofittable severe duty seal for a shaft.
It is a further object of this disclosure to show a method useful for sealing bearings in shaft-mounted dynamic rollers used in track-driven vehicles.
Another object is to provide a method that may be useful in any application where a shaft and shaft bearing or bushing surfaces may be exposed to mud, dust, abrasives, cement, submersion, abrasive liquids or other substances that could damage relative dynamic mechanical components.
Another object hereof is to disclose a method of using a seal that lasts longer than previously known low cost seals adapted for severe duty applications.
Another object of the present disclosure is to make essentially all of the important benefits of a dual cone face seal available at a much lower cost.
Yet another object hereof is to make essentially all of the important benefits of a dual cone face seal available in a physically smaller assembly.
It is an object to make essentially all of the important benefits of a dual cone face seal available in an assembly having the same physical dimensions as a conventional single lip or double lip seal.
Another object hereof is to provide a method for sealing a shaft and bearing assembly using a seal as an excluder seal, as a grease seal, as an oil seal, and as a seal for other liquids at low and moderate pressures.
Another object of this disclosure is to provide a method for using a seal having a shaft-contacting sleeve that enables the seal to be installed on and to operate reliably with shafts having imperfections such as those ordinarily caused by wear and use.
Another specific object is to provide a method of sealing a shaft and bearing assembly, using an unitary seal structure that both improves reliability, and makes seal installation easier compared to installation of seals that are composed of two or more separable parts.
A further object is to provide a method of using a seal with sealing elements that includes: a main sealing lip with a garter spring that biases the main sealing lip against the outside of the sleeve, at least one dust lip that contacts the sleeve, at least one dust lip that contacts the inner surface of the housing, at least one face dust lip that contacts the inner surface of the faceplate, and an elastomeric, shaft-contacting faceplate ring.
These and further objects of the apparatus taught in accordance with this specification, the claims, and the appended drawing figures are set forth below.
SUMMARY
The present disclosure shows a method using a retrofittable, radial lip seal for sealing a paired shaft and bore assembly rotatable with respect to one another, the seal having a sleeve that may be disposed coaxially on the shaft. The sleeve has an inner end (oil or grease side) that would normally be in contact with the grease, oil, or other fluid to be contained within a housing, an outer end (dirt side) opposite, a bore that has an elastomeric coating, and a sleeve flange extending radially outward from the outer end of the sleeve and generally perpendicular to the sleeve axis. The sleeve flange is terminated with an outer edge. One or more circular elastomeric faceplate-contacting lips extend coaxially opposite the oil side from the sleeve flange outer face.
A circular elastomeric perimeter lip extends radially and outwardly from the outer edge of the sleeve flange to contact a generally cylindrical hollow seal case adapted for fitting into a bore, such as a bore that is formed through a roller end plate, the wall of a housing, or other securement.
The case is formed from a generally cylindrical case body having an outside surface, or outside diameter, that may be disposed w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of using a retrofittable severe duty seal for a shaft does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of using a retrofittable severe duty seal for a shaft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of using a retrofittable severe duty seal for a shaft will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2963197

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.