Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Animal or plant cell
Patent
1994-03-22
1998-03-10
Feisee, Lila
Drug, bio-affecting and body treating compositions
Whole live micro-organism, cell, or virus containing
Animal or plant cell
424 937, A61K 3512, A61K 3514, A61K 3526, A61K 3528
Patent
active
057258554
ABSTRACT:
The present invention provides a method for enhancing the immunotherapeutic activity, e.g., antitumor activity, of immune cells by depleting immune cells of a cell subset that down-regulates the immune response, such as either CD4.sup.+ or CD8.sup.+ lymphocytes. The remaining depleted immune cell population or the separated immune cell subsets then are cultured in the presence of an antibody to a lymphocyte surface receptor, preferably an anti-CD3 monoclonal antibody (MoAb), optionally in the presence of a relatively minor amount of interleukin-2 (IL-2). These stimulated cells then are optionally additionally cultured in the presence of IL-2 without an antibody to a lymphocyte surface receptor. The present invention also provides a method of treating a mammal having tumors or immunizing a mammal against tumors by administering the stimulated depleted immune cell population or a stimulated immune cell subset to a mammal, advantageously together with an immunosuppressant, and with liposomal IL-2. The invention further provides a method of transferring the immunity of mammals that are treated or immunized in accordance with the invention by extracting splenocytes from these mammals and administering these splenocytes to a second mammal.
REFERENCES:
patent: 4690915 (1987-09-01), Rosenberg
patent: 4808151 (1989-02-01), Dunn et al.
P.M. Anderson et al., Cancer Immunol. Immunother., 1988, 27, 82, "Augmentation of cell number and LAK activity in peripheral blood mononuclear cells activated with anti-CD3 and interleukin-2".
P.M. Anderson et al., J. Immunol., 1989, 142, 1383, "Anti-CD3 .sup.+ IL-2 Stimulated Murine Killer Cells in Vitro Generation and in Vivo Antitumor Activity".
L.S. Davis et al., Cell Immunol., 1989, 118, 208, "T Cell Activation Induced by Anti-CD3 Antibodies Requires Prolonged Stimulation of Protein Kinase C".
Dianzani et al., Eur. J. Immunol., 19: 1037 (1989), "CD8.sup.+ CD11b.sup.+ peripheral blood T lymphocytes contain lymphokine-activated killer cell precursors".
Geller et al., J. Immunol., 146(10): 3280 (1991), "Generation of Lymphokine-Activated Killer Activity in T Cells".
T.D. Geppert et al., J. Clin. Invest., 1988, 81, 1497, "Activation of T Lymphocytes by Immobilized Monoclonal Antibodies to CD3".
E.A. Grimm et al., J. Exp. Med., 1982, 155, 1823, "Lymphokine-Activated Killer Cell Phenomenon".
M. Izquierdo et al., Clin. Exp. Immunol., 1988, 74, 300, "Selective T cell subset depletion with anti-CD4 and anti-CD8 intact ricin immunotoxins".
C.M. Loeffler et al., Cancer Res., 51: 2127 (1991), "Antitumor Effects of Interleukin 2 Liposomes and Anti-CD3-Stimulated T-Cells Against Murine MCA-38 Hepatic Metastasis".
E. Lotzova et al., Nat. Immun. Cell Growth Regul., 1987, 6, 219, "Augmentation of Antileukemia Lytic Activity by OKT3 Monoclonal Antibody: Synergism of OKT3 and Interleukin-2".
A.C. Ochoa et al., Cancer Res., 49: 963 (1989), "Lymphokine-activated Killer Activity in Long-Term Cultures with Anti-CD3 plus Interleukin 2: Identification and Isolation of Effector Subsets".
A.C. Ochoa et al., J. Immunol., 1987, 138, 2728, "Long-Term Growth of Lymphokine-Activated Killer (LAK) Cells: Role of Anti-CD3, .beta.-IL 1, Interferon-.gamma. and -.beta.".
L.E. Samuelson et al., Proc. Natl. Acad. Sci. USA, 87: 4358 (1990), "Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor".
R. Schwab et al., J. Immunol., 1985, 135, 1714, "Requirements for T-Cell Activation by OKT3 Monoclonal Antibody: Role of Modulation of T3 Molecules and Interleukin".
S. Shu et al., J. Immunol., 1985, 135, 2895, "Adoptive Immunotherapy of a Newly Induced Sarcoma: Immunologic Characteristics of Effector Cells".
Smyth, J. Exp. Med., 171: 1269 (1990), "Interleukin 2 Induction of Pore-Forming Protein Gene Expression in Human Peripheral Blood CD8.sup.+ T Cells".
Smyth, J. Immunol., 146: 3289 (1991), "Regulation of Lymphokine-Activated Killer Activity and Pore-forming Protein Gene Expression in Huan Peripheral Blood CD8.sup.+ T Lymphocytes".
C.-C. Ting et al., Immunol. Invest., 1990, 19, 347, "Anti-CD3 Antibody-Induced Activated Killer Cells Subsets of Killer Cells that Mediate Fast or Slow Lytic Reactions".
M. C. Turco et al., Blood, 1989, 74, 1651, "Proliferative Pathways in CD1 .sup.- CD3.sup.+ CD.sup.4+ CD8.sup.+ T Prolymphocytic Leukemic Cells: Analysis with Monoclonal Antibodies and Cytokines".
R. J. van de Griend et al., J. Immunol., 1987, 138, 1627, "Lysis of Tumor Cells by CD3.sup.+ 4.sup.- 8.sup.- 16.sup.+ T Cell Receptor .alpha..beta.- Clones, Regulated Via CD3 and CD16 Activation Sites, Recombinant Interleukin 2, and Interferon .beta.".
W. H. West et al., J. Immunol., 1977, 118, 355, "Natural Cytotoxic Reactivity of Human Lymphocytes Against a Myeloid Cell Line: Characterization of Effector Cells".
Ochoa et al., FASEB Journal, 3(3)A: 826 (abstract) (1989), "T Cels Can Develop High Lak Activity: Possible Regulatory Circuits".
Lotze et al., Cancer Res., 41: 4420 (1981), "Lysis of Fresh and Cultured Autologous Tumor by Human Lymphocytes Cultured in T-Cell Growth Factor".
Belldegrun et al., Cancer Res., 48: 206 (1988), "Interleukin 2 Expanded Tumor-infiltrating Lymphocytes in Human Renal Cell Cancer: Isolation, Characterization, and Antitumor Activity".
Maghazachi et al., J. Immunol., 141: 4039 (1988), "Influence of T Cells on the Expression of Lymphokine-Activated Killer Cell Activity and In Vivo Tissue Distribution".
Damle et al., J. Exp. Med., 158: 159 (1983), "Immunoregulatory T Cell Circuits in Man".
Lewis et al., PNAS, USA, 85: 9743 (1988), "Restricted production of interleukin 4 by activated human T cells".
Halvorsen et al., Scand J. Immunol. 27, 555-563, 1988, "Role of Accessory Cells in the Activation of Pure T Cells via the T Cell Receptor-CD3 Complex or with Phytohaemaggloutinin".
Halvorsen et al., Scand J. Immunol. 26, 197-205, 1987, "Activation of Resting, Pure CD4.sup.+, and CD8.sup.+ Cells via CD3".
Tsoukas et al. "Activation of Resting T Lymphocytes By Anti-CD3 (T3) Antibodies in the Absence of Monocytes", The Journal of Immunology, vol. 135, No. 3, Sep. 1985, pp. 1719-1723.
Hogan et al., "Lymphokine-Activated and Natural Killer Cell Activity in Human Intestinal Mucosa", The Journal of Immunology, vol. 135, No. 3, Sep. 1985, pp. 1731-1738.
Smyth, et al. Journal of Experimental Medicine, vol. 171, pp. 1269-1281; Apr. 1990.
Anderson, et al., Anti-CD3 + IL-2 Stimulated Murine Killer Cells: In Vitro Generation and In Vivo Antitumor Activity. J. Immunol. vol. 142, No. 4, 1383-1394, 1989.
Lotze, M.T., Transplantation and Adoptive Cellular Therapy of Cancer: The Role of T- Cell Growth Factors. Cell Transplant. vol. 2, pp. 33-47, 1993.
Lindeman et al., Lymphokine Activated Killer Cells, Blut vol. 59, pp. 375-384, 1989.
Osband et al., Problems in the Investigational Study and Clinical Use of Cancer Immunotherapy, Immunol. Today, vol. 11, No. 6, 1990.
I. Whiteside et al. Cancer Immunol. Immunother. 39:15-21 (1994).
Longo Dan L.
Ochoa Augusto Carlos
Saxton Mark L.
Feisee Lila
Gambel Phillip
Regents of the Univ. of Minnesota
The United States of America as represented by the Department of
LandOfFree
Method of treating tumors with CD8.sup.+ -depleted or CD4.sup.+ does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of treating tumors with CD8.sup.+ -depleted or CD4.sup.+ , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating tumors with CD8.sup.+ -depleted or CD4.sup.+ will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-137130