Method of treating sleep apnoea

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S650000, C514S654000, C514S923000

Reexamination Certificate

active

06365631

ABSTRACT:

This invention relates to a method of treating sleeping disorders for example sleep apnoea and snoring.
Patients with sleep apnoea experience transient episodes of breathing-cessation while they are asleep. When this disturbed respiration is associated with obstruction of the upper airways it is known as obstructive sleep apnoea. If the cause of the cessation of breathing is due to some neurogenic mechanism then it is known as the central sleep apnoea (see Martindale, The Extra Pharmacopoeia, 31
st
edition, p. 1545). Although several drugs have been used to combat this condition there remains a need for a more efficacious treatment with fewer side effects.
According to the present invention there is provided a method of treating sleeping disorders including sleep apnoea and snoring in which a therapeutically effective amount of a compound of formula I
including enantiomers and pharmaceutically acceptable salts thereof, in which R
1
and R
2
are independently H or methyl, is administered in conjunction with a pharmaceutically acceptable diluent or carrier to a human in need thereof.
The term sleeping disorders includes sleep apnoea, snoring, daytime sleepiness resulting from poor sleep during the night which is recognised as a significant cause of accidents, particularly road accidents, and other sleeping disorders known to those skilled in the art. In a preferred aspect the present invention provides a method of treating sleep apnoea.
The compounds of formula I are advantageous in that they may be used to provide a higher degree of efficacy and a lower degree of side effects compared to the conventional treatments.
A preferred compound of formula I is N,N-dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine or a salt thereof, for example the hydrochloride salt. A preferred form of this hydrochloride is its monohydrate.
The preparation and use of compounds of formula 1, such as N,N-dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine and salts thereof, in the treatment of depression is described in British Patent Specification 2098602. The use of compounds of formula I such as N,N-dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine and salts thereof in the treatment of Parkinson's disease is described in published PCT application WO 88/06444. The use of N,N-dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine and salts thereof in the treatment of cerebral function disorders is described in U.S. Pat. No. 4,939,175. The use of N,N-dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine hydrochloride in the treatment of obesity is described in published PCT application W090/06110. A particularly preferred form of this compound is N,N-dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine hydrochloride monohydrate (sibutramine hydrochloride) which is described in European Patent Number 230742. The use of N,N-dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine and salts thereof for improving the glucose tolerance of humans having Impaired Glucose Tolerance or Non-Insulin Dependent Diabetes Mellitus is described in published PCT application WO95/20949.
It will be appreciated by those skilled in the art that compounds of formula I contain a chiral centre. When a compound of formula I contains a single chiral centre it may exist in two enantiomeric forms. The present invention includes the use of the individual enantiomers and mixtures of the enantiomers. The enantiomers may be resolved by methods known to those skilled in the art, for example by formation of diastereoisomeric salts or complexes which may be separated, for example, by crystallisation; via formation of diastereoisomeric derivatives which may be separated, for example, by crystallisation, gas-liquid or liquid chromatography; selective reaction of one enantiomer with an enantiomer-specific reagent, for example enzymatic oxidation or reduction, followed by separation of the modified and unmodified enantiomers; or gas-liquid or liquid chromatography in a chiral environment, for example on a chiral support, for example silica with a bound chiral ligand or in the presence of a chiral solvent. It will be appreciated that where the desired enantiomer is converted into another chemical entity by one of the separation procedures described above, a further step is required to liberate the desired enantiomeric form. Alternatively, specific enantiomers may be synthesised by asymmetric synthesis using optically active reagents, substrates, catalysts or solvents, or by converting one enantiomer to the other by asymmetric transformation.
Preferred compounds of formula I are N,N-dimethyl-1-[1-(4-chlorophenyl)-cyclobutyl]-3-methylbutylamine, N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}N-methylamine, and 1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine including racemates, individual enantiomers and mixtures thereof, and pharmaceutically acceptable salts thereof.
The individual enantiomers can be prepared by enantioselective synthesis from optically active precursors, or by resolving the racemic compound which can be prepared as described above. Enantiomers of secondary amines of the formula I can also be prepared by preparing the racemate of the corresponding primary amine, resolving the latter into the individual enantiomers, and then converting the optically pure primary amine enantiomer into the required secondary amine by methods described in British Patent Specification 2098602.
Specific examples of compounds of formula I are:
(+)-N-[1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N-methylamine;
(−)-N-{1-[1-(4-chlorophenyl)cyclobutyl-3-methylbutyl}-N-methylamine;
(+)-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine;
(−)-1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine;
(+)-N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N-N-dimethylamine;
(−)-N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N-N-dimethylamine;
or a pharmaceutically acceptable salt thereof.
The hydrochloride salts are preferred in each case, but the free bases and other pharmaceutically acceptable salts are also suitable.
The compound of formula I may be administered in any of the known pharmaceutical dosage forms. The amount of the compound to be administered will depend on a number of factors including the age of the patient, the severity of the condition and the past medical history of the patient and always lies within the sound discretion of the administering physician but it is generally envisaged that the dosage of the compound to be administered will be in the range 0.1 to 50 mg preferably 1 to 30 mg per day given in one or more doses.
Oral dosage forms are the preferred compositions for use in the present invention and these are the known pharmaceutical forms for such administration, for example tablets, capsules, granules, syrups and aqueous or oil suspensions. The excipients used in the preparation of these compositions are the excipients known in the pharmacist's art. Tablets may be prepared from a mixture of the active compound with fillers, for example calcium phosphate; disintegrating agents, for example maize starch; lubricating agents, for example magnesium stearate; binders, for example microcrystalline cellulose or polyvinylpyrrolidone and other optional ingredients known in the art to permit tableting the mixture by known methods. The tablets may, if desired, be coated using known methods and excipients which may include enteric coating using for example hydroxypropylmethylcellulose phthalate. The tablets may be formulated in a manner known to those skilled in the art so as to give a sustained release of the compounds of the present invention. Such tablets may, if desired, be provided with enteric coatings by known methods, for example by the use of cellulose acetate phthalate. Similarly, capsules, for example hard or soft gelati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of treating sleep apnoea does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of treating sleep apnoea, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating sleep apnoea will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2873048

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.