Method of treating of pathological tissues and device to...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S002000, C606S009000

Reexamination Certificate

active

06171331

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a device used for medical treatments. More particularly, the present invention is related to a device and medical treatments for treating diseases accompanied by a metabolic disorder, weakening of enzymatic processes, and a regenerative function disorder in affected tissues. The method of medical treatment is used for therapy of rheumatoid arthritis, angiopathic syndrome at diabetes mellitus, gastric and duodenal ulcers, paradontosis and paradontitis, burns, as well as during remission after local facial plastic surgery. It can also be applied for treating other diseases of the same class.
2. Description of the Related Art
A method of treating diabetic angiopathy of inferior limbs (Russian Patent No. C1, 2049500, Dec. 10, 1995) is known that implies an internal irradiation of blood with a low-frequency IR emission. A method of treating diabetes mellitus (Russian Patent No. C1 2018329, Aug. 30, 1994) is known that uses a coherent emission to directly irradiate the liquid blood component. The above methods imply a direct effect of an internal irradiation upon the blood. They, however, provide no possibility to affect the physiological processes in tissue cells, or their effects are mediated by a number of uncontrolled factors. Besides, a coherent IR emission used in this case features a lower degree of penetration into tissues, which makes its effect on the tissue structure less organic and, consequently, more rigid.
A device for general local body heating (German Patent No. 4113803, 1992) is known that provides a deep penetration of IR emission into a human body. Its curing effect, however, is provided by a rise of tissue temperature that leads to an enhanced necrosis and drying of tissues in the process of their healing, thus promoting a secondary inflammatory process and introducing an additional risk factor in case of vasodilatation in pathologically changed tissues.
A method of treating skin injuries (Russian Patent No. C1 2032432, Apr. 30, 1995) is known based on the effect produced by a pulsed monochromatized light beam in the red wavelength band. The beam pulse mode, however, is applied in a limited wavelength band as the treated tissues are exposed to light having the wavelength of only 0.6 to 0.69 &mgr;m at a reduced power density of 5 to 10 mW/cm
2
. Thus, it cannot produce a curing effect for the whole class of diseases accompanied by metabolic disorders.
A multi-wavelength medical laser (U.S. Pat. No. 5,304,167, Apr. 19, 1994) is known that generates a first beam of pulsed electromagnetic energy and a second beam of electromagnetic energy having its wavelength in a visible portion of the optical spectrum, with both of them affecting the tissues simultaneously. This reference, however, discloses that the laser's wave energy is used for surgery rather than therapy.
An apparatus for thermal stimulation (Russian Patent No. 2045969 C1, Oct. 20, 1995) is known that affects tissues by IR emission in order to stimulate tissue processes. However, the stimulation used for the purpose is thermal.
A method of stimulating biologically active points (Russian Patent No. 93003767 A, Jul. 27, 1995) is known that stimulates body processes through use of IR-range wavelengths that feature a better penetration through the skin. However, the irradiation waveband ranges from 0.8 to 3 &mgr;m with its source located over the biologically active points affecting the entire body functions, rather than over the organ that controls the course of disease, thus leaving the disease out of consideration.
A method for treating the bleeding of hemophiliacs (U.S. Pat. No. 5,161,526, Nov. 10, 1992) is known based on biostimulation of affected regions of muscles and joints with a beam of light. This method, however, is applied only to stop bleeding and to increase blood coagulability through use of wavelengths ranging from 5.0 to 1.1 &mgr;m that are not effective for curing the whole set of medical indications typical to the entire class of diseases in question.
A method of affecting biological objects (Russian Patent No. 93015098 A, Sep. 10, 1995) is known that uses modulated pulses of energy, for instance IR energy, to optimize functioning of the biological object energy system and to affect the region of a sore organ. This method, however, does not imply affecting metabolic, regenerative, and enzymatic processes in tissues by treating disorders in tissue capillary circulation, vascular circulation, flow of lymph, as well as treating deceleration of blood flow and oxidation-reduction processes that cause functional, anatomic, and morphological changes in the structure of tissues of all kinds. Besides, the produced effects provide no increase to the curing efficiency compared to the optimum curing effect for diseases caused by disorders of metabolic, regenerative and enzymatic processes in tissues.
The closest to the suggested method of treatment is a method of treating gastric and duodenal ulcers (Russian Patent No. 94019587 A, 1997), implying a 1 to 20 minute transcutaneous irradiation of the affected region of mucosa with IR emission having the power density of 50 to 300 mW/cm
2
. However, the efficiency of this method is rather low, since the irradiation is performed through the skin site located directly over the affected region of mucosa and is unable to produce an optimum effect on metabolic, enzymatic, and regenerative processes in tissues. The emission has the wavelength from 7 to 25 &mgr;m. The given method of treatment provides a curing effect after a large number of irradiation sessions, however, complications are observed in the form of tissue necrosis and edema that decrease the efficiency of treatment by lowering the level of effects on tissues' regenerative, enzymatic, and metabolic processes. This is caused by the fact that the shallow penetration of the emission is unable to activate all the potentials of tissue structures across their entire thickness. Besides, activation and optimization of processes in tissues is also not equally effective for different types of tissues, different locations of affected tissues (deep or shallow), and different types of diseases. This increases the risk of relapses and complications, and decelerates the tissue healing process, since certain undesirable effects like necrosis, keloid cicatrices, and tissue edema have sufficient time to evolve.
A selective polarizing laser mirror (Russian Patent No. 2034318 C1, Apr. 30, 1995) is known with a multi-layer dielectric coat applied onto an optical substrate. The mirror polarizes the emission. The latter, however, is generated by another source, hence, its polarization parameters cannot be controlled by the given device.
A method of filtering optical emission (SU No. 1810868 C1, Apr. 23, 1993) is known based on a linear polarization of light. The method makes it possible to cut off a long-wave portion of the emission and to continuously vary the limiting passband frequency. However, it cannot linearly polarize a specific wavelength of the emission that varies in accordance with the task.
A device for treatment of undesired skin disfigurements (U.S. Pat. No. 5,320,618, Jun. 14, 1994) is known that emits a pulsating light beam. However, the light wavelength transformer used in the device does not respond to wavelength variations and cannot provide an optimum curing effect by combining a specific wavelength of the emission with a certain magnitude of its pulsation.
High energy light emitting diodes (LEDs) for photodynamic therapy (PCT Patent No. 93/21842 A1, 1993) are known. The device and the method suggested for activating the healing processes by photodynamic therapy utilize the emission of powerful LEDs in a certain preselected portion of the optical spectrum. However, a complex feedback circuit needed to monitor the light parameters makes it impossible to adjust the device to a specific type of disease.
A polarizing grating (SU No. 1781659 C1, Dec. 15, 1992) is known that polarizes light in a broad wa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of treating of pathological tissues and device to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of treating of pathological tissues and device to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating of pathological tissues and device to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2552878

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.