Method of treating metals using amino silanes and...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From silicon reactant having at least one...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S038000, C252S389310

Reexamination Certificate

active

06596835

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method of metal treatment. More particularly the invention relates to a method of improving corrosion resistance of a metal. The method has particular utility when the metal is to be subsequently painted, or operations such as bonding rubber to metals or bonding metals to metals are to be carried out subsequent to the silane treatment. The method comprises applying a solution containing one or more amino silanes in admixture with one or more multi-silyl-functional silanes to a metal substrate in order to form a corrosion resistant coating. The method is particularly suitable for use on cold-rolled steel, zinc, iron, aluminium and aluminium alloy surfaces.
DESCRIPTION OF RELATED ART
Most metals are susceptible to some form of corrosion, in particular atmospheric corrosion including the formation of various types of rust. Such corrosion may significantly affect the quality of such metal substrates, as well as that of the products produced therefrom. Although corrosion may often be removed from the metal substrates, these processes are often, time consuming costly and may further diminish the integrity of the metal. Additionally, where polymer coatings such as paints, adhesives or rubbers are applied to the metal substrates, corrosion of the base metal material may cause a loss of adhesion between the polymer coating and the base metal. Such a loss of adhesion between a coating layer and the base metal may likewise lead to corrosion of the metal.
Metallic coated steel sheet such as galvanized steel for example is used in many industries, including the automotive, construction and appliance industries. In most cases, the galvanized steel is painted or otherwise coated with a polymer layer to achieve a durable and aesthetically-pleasing product. Galvanized steel, particularly hot-dipped galvanized steel, however, often develops “white rust” during storage and shipment. White rust (also called “storage stain”) is typically caused by moisture condensation on the surface of the galvanized steel which reacts with the zinc coating. White rust is aesthetically unappealing and impairs the ability of the galvanized steel to undergo subsequent process steps such as being painted or otherwise coated with a polymer. Thus, prior to such coating, the zinc surface of the galvanized steel must be pretreated in order to remove the white rust which is present, and prevent it from reforming beneath the polymer layer. Various methods are currently employed to not only prevent the formation of white rust during shipment and storage, but also to prevent the formation of the white rust beneath a polymer coating (e.g., paint).
It is well established that prevention of the formation of white rust on hot-dipped galvanized steel during storage and shipping can be achieved by treating the surface of the steel with a thin chromate film. While such chromate coatings do provide resistance to the formation of white rust, chromium is highly toxic and environmentally undesirable.
It is also known to employ a phosphate conversion coating in conjunction with a chromate rinse in order to improve paint adherence and provide corrosion protection. It is believed that the chromate rinse covers the pores in the phosphate coating, thereby improving the corrosion resistance and adhesion performance. Once again, however, it is highly desirable to eliminate the use of chromate altogether. Unfortunately, however, the phosphate conversion coating is generally not effective without the chromate rinse.
Aluminium alloys are particularly susceptible to corrosion as the alloying elements used to improve the metal's mechanical properties (e.g., copper, magnesium and zinc) will decrease corrosion resistance.
Recently, various techniques for eliminating the use of chromate have been proposed. These include the steps of providing an aqueous alkaline solution comprising an inorganic silicate and a metal salt in an amount to coat a steel sheet, followed by treating the silicate coating with an organofunctional silane (U.S. Pat. No. 5,108,793).
U.S. Pat. No. 5,292,549 teaches the rinsing of metal sheet with an aqueous solution containing low concentrations of an organofunctional silane and a cross linking agent in order to provide temporary corrosion protection. The cross-linking agent cross-links the organofunctional silane to form a denser siloxane film. The ratio range of silane to cross-linker is 20:1-2:1.
WO 98/30735 discloses a method of preventing corrosion using 2 treatment solutions, applied separately. The first solution employs a multi-silyl-functional silane cross-linker while the second solution employs an organofunctional silane.
U.S. Pat. No. 5,433,976 teaches the rinsing of a metal sheet with an alkaline solution containing a dissolved silicate or aluminate, an organofunctional silane and a cross-linking agent in order to form an insoluble composite layer containing siloxane.
WO 98/19798 relates to a method of preventing corrosion of metal sheet effected by the application of a solution containing one or more hydrolyzed vinyl silanes to the metal sheet. The method is particularly useful as a pretreatment step prior to painting of galvanized steel as the vinyl functionalities promote the adhesion between the metal surface and the paint coating. A disadvantage, however, is that the vinyl silanes do not bond particularly well to the metal surface.
U.S. Pat. No. Re. 34, 675 (re-issue of U.S. Pat. No. 4,689,085) describes coupling agent and primer compositions which comprise a conventional silane coupling agent and bis (trialkoxy) organo compound, and partially hydrolyzed products of such mixtures.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method of providing long-term corrosion resistance to a metal substrate.
It is another object of the present invention to provide a method of providing a coating for long-term corrosion resistance to a metal substrate sheet which essentially employs a single-step treatment process.
It is a further object of the present invention to provide a treatment solution for providing a coating for corrosion resistance to metal substrate, wherein the treatment composition need not be removed prior to painting.
It is a further object of the present invention to provide a treatment coating and solution for promoting rubber to metal bonding.
It is a further object of the present invention to provide a treatment solution for promoting metal to metal bonding using adhesives.
The foregoing objects may be accomplished, in accordance with one aspect of the present invention, by providing a method of improving corrosion resistance of a metal substrate, comprising of the steps of:
(a) providing a metal substrate, the said metal substrate chosen from the group consisting of:
steel;
steel coated with a metal chosen from the group consisting of: zinc, zinc alloy, aluminium and aluminium alloy;
iron;
zinc and zinc alloys;
aluminium; and
aluminium alloy; and
(b) applying a long-term coating on the metal substrate by contacting the metal substrate with a solution containing one or more hydrolyzed or partially hydrolyzed amino silanes, one or more hydrolyzed or partially hydrolyzed multi-silyl-functional silanes and a solvent and substantially removing the solvent.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The applicants have found that corrosion resistance of metal, particularly cold-rolled steel, steel coated with a metal chosen from the group consisting of zinc, zinc alloy, aluminium and aluminium and aluminium alloy, aluminium and aluminium alloy per se and iron, can be improved by applying a treatment solution containing one or more hydrolyzed or partially hydrolyzed amino silanes to said metal, wherein the treatment solution additionally contains one or more multi-silyl-functional silanes, having either 2 or 3 trisubstituted silyl groups, wherein the multi-silyl-functional silane(s) has been at least partially hydrolyzed. The treatment solution forms a long-term corrosion resistant coating upon curing.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of treating metals using amino silanes and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of treating metals using amino silanes and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating metals using amino silanes and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3090158

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.