Drug – bio-affecting and body treating compositions – Lymphokine
Reexamination Certificate
1999-10-13
2002-09-17
Kemmerer, Elizabeth (Department: 1647)
Drug, bio-affecting and body treating compositions
Lymphokine
C424S184100, C424S185100, C424S198100, C512S002000, C512S012000
Reexamination Certificate
active
06451303
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention is directed to a unit dose comprising an FGF or an angiogenically active fragment or mutein thereof for inducing cardiac angiogenesis in a human. The present invention is also directed to a pharmaceutical composition comprising the unit dose of the FGF and to a method for administering this pharmaceutical composition to a human to induce cardiac angiogenesis while minimizing systemic risk to the patient. The present invention is useful because the unit dose, pharmaceutical composition and the method for its administration provide an alternative to surgical intervention for the treatment of coronary artery disease (CAD) and may further provide an adjunct for reducing post myocardial infarct (MI) injury in humans.
B. Background of the Invention
The fibroblast growth factors (FGF) are a family of at least eighteen structurally related polypeptides (named FGF-1 to FGF-18) that are characterized by a high degree of affinity for proteoglycans, such as heparin. The various FGF molecules range in size from 15-23 kD, and exhibit a broad range of biological activities in normal and malignant conditions including nerve cell adhesion and differentiation [Schubert et al.,
J. Cell Biol.
104:635-643 (1987)]; wound healing [U.S. Pat. No. 5,439,818 (Fiddes)]; as mitogens toward many mesodermal and ectodermal cell types, as trophic factors, as differentiation inducing or inhibiting factors [Clements, et al.,
Oncogene
8:1311-1316 (1993)]; and as an angiogenic factor [Harada,
J. Clin. Invest.,
94:623-630 (1994)]. Thus, the FGF family is a family of pluripotent growth factors that stimulate to varying extents fibroblasts, smooth muscle cells, epithelial cells and neuronal cells.
When FGF is released by normal tissues, such as in fetal development or wound healing, it is subject to temporal and spatial controls. However, many of the members of the FGF family are also oncogenes. Thus, in the absence of temporal and spatial controls, they have the potential to stimulate tumor growth by providing angiogenesis.
Coronary artery disease (atherosclerosis) is a progressive disease in humans wherein one or more coronary arteries gradually become occluded through the buildup of plaque. The coronary arteries of patients having this disease are often treated by balloon angioplasty or the insertion of stents to prop open the partially occluded arteries. Ultimately, these patients are required to undergo coronary artery bypass surgery at great expense and risk. It would be desirable to provide such patients with a medicament that would enhance coronary blood flow so as to preclude the need to undergo bypass surgery.
An even more critical situation arises in humans when a patient suffers a myocardial infarction, wherein one or more coronary arteries or arterioles becomes completely occluded, such as by a clot. There is an immediate need to regain circulation to the portion of the myocardium served by the occluded artery or arteriole. If the lost coronary circulation is restored within hours of the onset of the infarction, much of the damage to the myocardium that is downstream from the occlusion can be prevented. The clot-dissolving drugs, such as tissue plasminogen activator (tPA), streptokinase, and urokinase, have been proven to be useful in this instance. However, as an adjunct to the clot dissolving drugs, it would also be desirable to also obtain collateral circulation to the damaged or occluded myocardium by angiogenesis.
Accordingly, it is an object of the present invention to provide a medicament and a mode of administration that provides human patients with cardiac angiogenesis during coronary artery disease and/or post acute myocardial infarction. More particularly, it is a further object of the present invention to provide a therapeutic dose of a mammalian FGF and a mode of administration to humans that provide the desired property of cardiac angiogenesis, while minimizing adverse effects.
Many of the various FGF molecules have been isolated and administered to various animal models of myocardial ischemia with varying and often times opposite results. According to Battler et al., “the canine model of myocardial ischemia has been criticized because of the abundance of naturally occurring collateral circulation, as opposed to the porcine model, which ‘excels’ in its relative paucity of natural collateral circulation and its resemblance to the human coronary circulation.” Battler et al., “
Intracoronary Injection of Basic Fibroblast Growth Factor Enhances Angiogenesis in Infarcted Swine Myocardium
,” JACC, 22(7): 2001-6 (December 1993) at page 2002, col. 1. However, Battler et al., who administered bovine bFGF (i.e., FGF-2) to pigs in a myocardial infarct model, considered the varying results that are obtained from one animal species to another, and expressly discloses that the divergent results “thus emphasiz[e] the caution that must be exercised in extrapolating results from different animal models.” Battler et al., at page 2005, col. 1. Further, Battler points out that “the dosage and mode of administration of bFGF [i.e., bovine FGF-2] may have profound implications for the biologic effect achieved.” Battler, et al., at page 2005, col. 1. Thus, it is a further object of this invention to discover a dosage and a mode of administration of a fibroblast growth factor that would provide for the safe and efficacious treatment of CAD and/or post MI injury in a human patient. More generally, it is an object of the present invention to provide a pharmaceutical composition and method for inducing angiogenesis in a human heart.
SUMMARY OF THE INVENTION
The Applicants have discovered that a fibroblast growth factor, such as of SEQ ID NOS: 1-3, 5, 8-9, or 12-14 or an angiogenically active fragment or mutein thereof, when administered as a unit dose of about 0.2 &mgr;g/kg to about 36 &mgr;g/kg into one or more coronary vessels (IC) of a human patient in need of coronary angiogenesis, unexpectedly provides the human patient with a rapid and therapeutic cardiac angiogenesis sufficient to obviate surgical intervention and results in an unexpectedly superior increase in the treated patient's exercise tolerance time (ETT). By way of comparison, angioplasty is considered a therapeutic success if it provides an increase in a patient's ETT of greater than 30 seconds compared to the placebo. By the term “cardiac angiogenesis” or “coronary angiogenesis,” as used herein, is meant the formation of new blood vessels, ranging in size from capillaries to arterioles which act as collaterals in coronary circulation.
FGFs that are suitable for use in the present invention include human FGF-1 (SEQ ID NO: 1), bovine FGF-1 (SEQ ID NO: 2), human FGF-2 (SEQ ID NO: 3), bovine FGF-2 (SEQ ID NO: 5), human FGF-4 (SEQ ID NO: 8), human FGF-5 (SEQ ID NO: 9), human FGF-6 (SEQ ID NO: 10), human FGF-8 (SEQ ID NO: 12), human FGF-9 (SEQ ID NO: 13) and human FGF-98 (SEQ ID NO: 14). In one embodiment, FGF molecules are human FGF-1 (SEQ ID NO: 1), bovine FGF-1 (SEQ ID NO: 2), human FGF-2 (SEQ ID NO: 3), bovine FGF-2 (SEQ ID NO: 5), human FGF-4 (SEQ ID NO: 8) and human FGF-5 (SEQ ID NO: 9). In an alternative embodiment, the FGF molecules are human FGF-6 (SEQ ID NO: 10), murine FGF-8 (SEQ ID NO: 12), human FGF-9 (SEQ ID NO: 13) or human FGF-98 (SEQ ID NO: 14).
Typically, the angiogenically active fragments of the present invention retain the distal two thirds of the mature FGF molecule (i.e., the two thirds of the molecule at the carboxy end that have the cell binding sites). For convenience, the terms “human FGF,” “bovine FGF” and murine FGF are used herein in abbreviated form as “hFGF,” “bFGF” and “mFGF,” respectively.
The Applicants also discovered that a single unit dose of an FGF or an angiogenically active fragment thereof, when administered as a unit dose into one or more coronary vessels (IC) of a human patient in need of coronary angiogenesis (e.g., a human patient with coronary artery disease d
Kavanaugh W. Michael
Whitehouse Martha J.
Alexander Lisa E.
Blackburn Robert P.
Bunner Bridget E.
Chiron Corporation
Henry Leslie T.
LandOfFree
Method of treating coronary artery disease by administering... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of treating coronary artery disease by administering..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of treating coronary artery disease by administering... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2865111