Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Insulative housing or support
Reexamination Certificate
2001-08-20
2004-11-09
Pert, Evan (Department: 2829)
Semiconductor device manufacturing: process
Packaging or treatment of packaged semiconductor
Insulative housing or support
Reexamination Certificate
active
06815259
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of supporting a flexible substrate such as a plastic film, in particular, to a treatment method including a transfer facility and an alignemnt, which is allowed by fixing a flexible substrate with a sheet form into a frame with rigidity. Also, the present invention relates to a method of fixing a flexible substrate into a holding frame and depositing a non-single crystalline semiconductor film on the flexible substrate to manufacture a semiconductor device.
2. Related Background Art
Recently, with respect to a semiconductor device manufactured using a semiconductor film, various substrate materials are used. Thus, electronic device products in which a non-single crystalline silicon thin film is formed on not only a substrate made of a single crystalline silicon material but also an insulating substrate or the like have been progressed. The non-single crystalline silicon has visual light absorption characteristics superior to the single crystalline silicon, and thus a solar battery using a thin film of the non-single crystalline silicon can be formed. Further, a thin film transistor non-single crystalline silicon formed on a light transmitting and insulating substrate such as a glass substrate is generally applied as an active element of a liquid crystal display device. With respect to an electronic device using a thin film semiconductor, a low manufacturing cost and high processing flexibility are also the characteristics. Note that, here, the non-single crystalline silicon indicates amorphous silicon, microcrystalline silicon, thin film polycrystalline silicon or a mixture of those.
In particular, a thin film solar battery manufactured by forming a non-single crystalline silicon film on a flexible substrate such as a plastic film is greatly noted. Since such a solar battery is a thin type, light weight, flexible, and the like, that is, has characteristics that a solar battery manufactured using a glass substrate does not have, its application is expanded to a novel product field.
However, it is very difficult to treat the plastic film. A hard substrate such as a glass substrate has rigidity and a small thermal expansion coefficient. Therefore, a shrinkage and a warp due to a heat cycle in a manufacturing process of a non-single crystalline silicon solar battery manufactured at a relatively low temperature are extremely slight, and thus there is particularly no problem in the process. The glass substrate can be independently supported by its mechanical strength and thus automation of an apparatus can be easily designed. However, the plastic film substrate is curved and deformed due to the heat cycle in the manufacturing process, as shown in
FIGS. 1A
,
1
B, and
1
C, and further there is the case where the deformation of the substrate is promoted due to an internal stress of a film to be formed. In particular, when the plastic film substrate is formed with a sheet form, such a thin plastic film substrate has flexibility and thus it is difficult to independently support the substrate. Therefore, the automation of the manufacturing process is delayed.
When the non-single crystalline silicon is formed in the sheet-shaped plastic film substrate by a general load lock plasma CVD apparatus, in order to prevent the curvature and the deformation due to heating and the internal stress of the film described above, it is essential to prefix the substrate by a jig and carry it. Also, since the film substrate itself does not have almost weight and rigidity, it is essential to prefix the substrate by the jig and carry it. As shown in
FIG. 2A
, the film fixing jig is constructed by a metal plate
204
made of aluminum, stainless, or the like and a frame (or a frame type)
201
made of the same metal as the metal plate
204
, which are overlapped with each other in the vertical direction. As shown in
FIG. 2B
, the film substrate is fixed by screw cramp, or sandwiching using a clip or the like. In the case of such a fixing method, the following problems are given. That is, the fixing operation is complicated. Further, since only ends of the film substrate are partially fixed and a force for fixing the film substrate is not uniformed, as shown in
FIG. 3
, a warp and a wrinkle
305
are easy to occur in the entire film substrate. Also, since the metal fixing jig itself is expanded during heating, there is the case where the warp and the wrinkle are promoted and the case where in-plane thermal uniformity of the film substrate is reduced and a film thickness and film quality of the non-single crystalline silicon to be formed are not uniformed. Also, as described above, since the film substrate is fixed by sandwiching, a step is caused between the surface of the film substrate and the fixing frame. Therefore, since plasma is not uniformly spread at the film formation, a film thickness and film quality in the ends of the film substrate are not easily uniformed. This causes a reduction in a product yield. Also, even in sputtering, vacuum evaporation, or the like as a film formation process of a transparent conductive film such as a metal electrode or an ITO film, the reduction in yield is caused by the same harmful influence.
In the manufacturing process of the thin film solar battery using the plastic film substrate, a laser processing process for performing element isolation and dividing solar batteries into a predetermined shape and a printing process for performing insulating processing, electrode formation, and the like are widely used in addition to the film formation process. In the laser processing process as the former, the structure is such that laser light condensed by an optical system is focused onto the surface of an object to be processed. Then, a stage is scanned at a predetermined energy density along a preset path to perform processing. Therefore, if the surface to be processed is not smooth and a level is not kept, there is the case where an energy density on the surface to be irradiated is changed and thus a processing failure is caused within the surface to be scanned. In order to prevent such a processing failure, generally, vacuum suction is performed for leveling the film substrate. This vacuum suction is an effective means in the case of a general film substrate leveling as shown in FIG.
4
A. However, there is the case where the film substrate itself is warped and deformed due to the film stress as described above and thus the vacuum suction failure is caused as shown in FIG.
4
B. Further, the laser processing is a means for micro-processing a plurality of product patterns using as a standard a point (hereinafter referred to as a marker) which is provided in advance within the surface of the film substrate. However, in the case of an operation for setting the film substrate on a vacuum suction stage, even when the alignment by fixing the ends of the film substrate is performed, it is cannot be prevented that the marker becomes an arbitrary position. Therefore, it is necessary to optically detect the position of the marker and finely actuate the stage every sheet, and thus to initialize a processing start position.
On the other hand, the printing process is performed plural times for insulating processing, integration, formation of both surface electrodes, and the like before and after the laser processing process. As a printing method, a screen printing technique is generally used. According to this technique, a resin as an object is applied to a screen stencil in which a pattern is formed, and then the inner surface of the screen stencil is pressured and moved by using a spatula-shaped rubber plate that is called a squeegee. Thus, press printing is performed for the surface of an object to be printed, which is located under the stencil. In the case of this printing process, if the surface of the film substrate is not smooth and a level is not kept for the screen stencil, the pattern cannot be accurately printed. Therefore, similarly to the laser processing, the vacuum sucti
Morooka Hisao
Ninomiya Hideaki
Nishi Kazuo
Yamamoto Yoshihito
Geyer Scott B.
Pert Evan
Robinson Eric J.
Robinson Intellectual Property Law Office P.C.
Semiconductor Energy Laboratory Co,. Ltd.
LandOfFree
Method of supporting a flexible substrate and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of supporting a flexible substrate and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of supporting a flexible substrate and method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3363357