Method of sterilizing a radiation-resistant medical adhesive...

Chemical apparatus and process disinfecting – deodorizing – preser – Process disinfecting – preserving – deodorizing – or sterilizing – Using direct contact with electrical or electromagnetic...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S002100, C428S041300, C428S041500, C522S071000, C522S079000, C522S152000, C522S153000, C522S154000, C523S111000, C523S125000

Reexamination Certificate

active

06830726

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a radiation-resistant adhesive composition and in particular to a radiation-resistant adhesive composition suitably used in medical adhesive products sterilized by radiations (&ggr;-rays, electron rays), such as adhesive tapes, adhesive plasters, surgical drapes and packaging materials for medical instruments, as well as a radiation-resistant adhesive product comprising the same.
For medical instruments, a method of sterilization with an ethylene oxide gas is mainly used at present. In recent years, however, a method of sterilization with radiations (&ggr;-rays, electron rays) came to be used in place of the method because of the problem of a residual gas. Upon sterilization with radiations, adhesive products comprising an acrylic adhesive had the problem of a reduction in the adhesion thereof after irradiation with radiations as compared with the adhesion before irradiation, that is, the adhesion of adhesive tapes, adhesive plasters or surgical drapes comprising an acrylic adhesive became lower than predetermined adhesion, or adhesive labels stuck on medical instruments were easily released.
OBJECTS AND SUMMARY OF THE INVENTION
The object of the present invention is to provide an acrylic adhesive with less reduction in the adhesion thereof upon irradiation with radiations and an adhesive product comprising the same.
The present invention encompasses:
(1) A radiation-resistant acrylic adhesive composition comprising an acrylic polymer and a radiation-resistant agent.
(2) The radiation-resistant acrylic adhesive composition according to item (1) above, wherein the amount (solid content) of the radiation-resistant agent is 5 to 100 parts by weight relative to 100 parts (solid content) by weight of the acrylic polymer.
(3) A radiation-resistant adhesive product comprising the radiation-resistant acrylic adhesive composition described in item (1) or (2) above.
(4) The radiation-resistant adhesive product according to item (3) above, wherein the adhesion thereof after irradiation with 60 kGy electron rays, as determined in accordance with JIS (Japanese Industrial Standard) Z0237, is 80 to 100% of the adhesion thereof before irradiation.
The radiation-resistant agent used in the present invention refers to a compound which can compensate for the reduction in adhesion (due to an increase in the degree of crosslinkage) attributable to irradiation with radiations and which is compatible with an acrylic adhesive (which comprises an acrylic polymer and optional components).
The radiation-resistant agent includes e.g. rosin, rosin derivatives (e.g., modified rosin such as hydrogenated rosin, disproportionated rosin, polymerized rosin etc., and modified rosin esters thereof, terpene resin, terpene phenol resin, aromatic modified terpene resin, hydrogenated terpene resin, aliphatic petroleum resin, aromatic petroleum resin, copolymerized petroleum resin, alicyclic petroleum resin, hydrogenated petroleum resin and alkyl phenol resin.
The amount (solid content) of the radiation-resistant agent compounded is usually 5 to 100 parts by weight, preferably 10 to 80 parts by weight, relative to 100 parts (solid content) by weight of an acrylic polymer in the acrylic adhesive composition.
Although alkyl (meth)acrylates used as the major component in starting monomers for the acrylic polymer in the present invention are not particularly limited, it is usually possible to use various alkyl acrylates or alkyl methacrylates wherein the alkyl group constituting an ester group is a C
1-18
alkyl group, and specific examples include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, isooctyl methacrylate etc.
As the monomers constituting the acrylic polymer in the present invention, the above-enumerated alkyl (meth)acrylates may be used alone or in combination thereof or may be used in combination with other copolymerizable monomers. As the other copolymerizable monomers, use can be made of a wide variety of monomers known as modifying monomers for acrylic adhesive, such as vinyl acetate, styrene, acrylonitrile, acrylamide, dimethylacrylamide, acrylic acid, methacrylic acid, 2-hydroxyethyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate and N-vinylpyrrolidone.
Polymerization of these monomers is carried out by a conventional polymerization method such as solution polymerization, emulsion polymerization and bulk polymerization. The reaction temperature for polymerization is usually 50 to 85° C., preferably 60 to 80° C.
When solution polymerization is carried out, the monomers are polymerized at a concentration (as solid content) of usually 0.5 to 60% by weight, preferably 5 to 50% by weight in the presence of a polymerization initiator such as 2,2′-azobisisobutyronitrile or benzoyl peroxide in a solvent such as acetone, benzene, toluene, ethyl acetate, hexane, heptane, methanol, ethanol or isopropanol.
The amount (solid content) of the polymerization initiator compounded is usually 0.05 to 1 part by weight based on 100 parts (solid content) by weight of the acrylic polymer.
A crosslinking agent (curing agent), for example, an isocyanate compound such as hexamethylenediisocyanate and tolylenediisocyanate; an epoxy compound such as 1,3-bis(N,N-diglycidylaminomethyl) toluene and N,N,N′,N′-tetraglycidyl-4,4′-diaminodiphenylmethane; a metal chelate compound such as tris(ethylacetoacetato)aluminum and ethylacetoacetatoaluminum diisopropylate; and an imine compound such as N,N′-toluene-2,4-bis(1-aziridinecarboxyamido)triethylenemelamine and hexamethylene diethylene urea can also be added to the radiation-resistant acrylic adhesive composition of the present invention.
The amount (solid content) of the crosslinking agent compounded is usually 0.05 to 5 parts by weight, preferably 0.1 to 3 parts by weight, relative to 100 parts (solid content) by weight of the acrylic polymer.
If necessary, the radiation-resistant acrylic adhesive composition of the present invention can be compounded with a softener such as process oil, polyisobutylene and polybutene; fillers such as titanium oxide, zinc oxide, aluminum metasilicate, calcium carbonate and calcium phosphate; a moisture retaining agent such as starch, cellulose derivatives and polyvinyl alcohol; and liquid paraffin.
The radiation-resistant adhesive product of the present invention encompasses adhesive tapes, adhesive plasters, adhesive sheets, adhesive labels, adhesive packaging bags, and can be obtained by applying the adhesive composition onto a substrate or a release sheet to form an adhesive layer thereon.
The thickness of the adhesive layer in the radiation-resistant adhesive product of the present invention is usually 5 to 200 &mgr;m, preferably 10 to 100 &mgr;m.
The substrate used in the radiation-resistant adhesive product of the present invention is not particularly limited, and for example, use is made of a resin film made of polyesters (e.g., polyethylene terephthalate), polyethylene, polypropylene, polyvinyl chloride, polycarbonates, ethylene-vinyl acetate copolymers, polyurethane, polystyrene or polyimides, or paper, synthetic paper, cloth, metal foil etc.
The thickness of such a substrate is usually 5 to 1000 &mgr;m, preferably 20 to 500 &mgr;m.
In addition, the adhesive product may have a release sheet laminated on the surface of the adhesive layer provided on the substrate in order to protect the adhesive layer. As the release sheet, for example a sheet having a releasing treatment layer such as silicone resin provided on a sheet material selected from the above-described substrates is used.
Further, the radiation-resistant adhesive product of the present invention may be in such a form that the above-described substrate is not used. In this case, the adhesive product is used in such a form that the adhesive layer is protected in both sides the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of sterilizing a radiation-resistant medical adhesive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of sterilizing a radiation-resistant medical adhesive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of sterilizing a radiation-resistant medical adhesive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334919

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.