Method of sterilization of musical wind instruments

Drying and gas or vapor contact with solids – Process – With nondrying treating of material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C034S380000, C034S516000

Reexamination Certificate

active

06408538

ABSTRACT:

FIELD OF THE INVENTION
The present invention provides a method of sterilizing musical wind instruments and their parts (e.g., mouthpieces), cases and/or accessories (collectively referred to herein as “accessories”). More particularly, the present invention provides a sterilization method using a gas diffusion process and a gas sterilant, such as ethylene oxide, to sterilize, or at least sanitize, musical wind instruments and/or their accessories.
BACKGROUND OF THE INVENTION
Playing musical instruments is a very popular activity in the United States and throughout the world. Musical instruments generally fall into three classes: string instruments, percussion instruments and wind instruments. The string instruments, i.e., violins, guitars, cellos and the like, produce musical tones by bowing or plucking strings which vibrate in audible frequencies. The percussion instruments, i.e., drums, gongs, cymbals, tympani and the like, produce sounds by providing a surface which is struck with a stick, mallet or similar object. One hybrid instrument, the piano, produces tones using strings which are struck by padded hammers that are controlled using a keyboard. Finally, the wind instruments produce musical tones when air is blown through them or across openings in them.
The wind instruments generally fall within two main categories. Brass instruments, such as trumpets, French horns, trombones, tubas and the like, are usually constructed of metals and include a bell shaped mouthpiece that the musician places against his or her lips. Woodwinds, such as clarinets, saxophones, oboes, bassoons and the like, are usually constructed of a variety of materials and include a single or double reed which is placed partially in the musician's mouth. One family of woodwinds, the flutes, do not include a reed, but rather have an aperture called an embouchure across which the musician blows to produce a musical tone.
A wide variety of materials are employed in constructing wind instruments. While the brass instruments are constructed primarily of metals, woodwinds tend to comprise a combination of woods, metals, plastics, rubbers and fibrous materials such as cotton. In fact, some flutes even use fish scales in the design of pads which cover and expose various keyholes. Since the wind instruments are played by blowing into them, it is natural that some of the musician's body fluids, including blood elements, saliva and water vapor, will accumulate in their interiors. Instruments that include curved portions often include a mechanism, called a spit-valve, that can be opened to allow accumulated fluids to be drained from the instrument.
Most serious musicians own their instruments and treat them as very personal objects. That notwithstanding, however, many beginning music students, particularly those in elementary and secondary schools, use instruments which they have borrowed from the institution in which they receive their musical training. Typically, a student may rent an instrument for a semester or a school year, returning it upon completion of the rental period. In many locations, the practice is to store the returned instrument until the next musician seeking such an instrument rents it. There is nothing to guarantee that each student will receive the same instrument from rental term to rental term.
As a result of these practices, student musicians often obtain instruments that have been rented and used by others. This raises health issues because at present little if anything is done to clean or sanitize instruments between users and/or rentals. Thus, while the exterior of the instruments may receive a polish, the interior remains coated with dried saliva and exhaled water vapor from the prior user. This raises potential problems since the interior of wind instruments, particularly when damp, can form an excellent environment for the growth of infectious microbes, such as bacteria or viruses, which can cause illness when ingested or inhaled. The medical model of universal precautions mandates that all patients and the devices used in their treatment (especially when bodily fluid contamination is included) be viewed as potentially infectious. Applying these precautions to musical wind instruments makes good sense, since musical wind instruments, and particularly their interiors, are repeatedly contacted with bodily fluids as a natural result of the musician playing the instrument.
Sterilization of instruments raises several difficult practical and technical problems. For example, on the practical side, any sterilization must be relatively affordable, simple and not overly time-consuming. On the technical side, the sterilization of items constructed of a variety of materials including organic materials such as woods and cotton is a challenge. Of course, any sterilization method employed must be one which causes virtually no physical damage to the instrument. This is an issue because many known sterilizing agents, such as ultraviolet radiation, are known to degrade organic materials such as wood.
Thus, a need exists for affordable and efficient methods which allow the sterilization, or at the very least, the sanitization, of musical wind instruments. These methods must also be such that they do not damage the musical wind instruments during the sterilization process.
SUMMARY OF THE INVENTION
The invention provides a method of sterilizing a musical wind instrument using a gas diffusion process. In a first embodiment of the invention, the method of sterilization comprises steps of placing one or more musical instruments and/or accessories in one or more open, sealable diffusion bags, evacuating air from the diffusion bag, sealing the diffusion bag to achieve a leak-proof seal, placing the diffusion bag in a chamber of a sterilizer or a temperature-controlled sterilization room equipped with an exhaust ventilation system, creating a sterilizing atmosphere within the diffusion bag by introducing a gas sterilant such as ethylene oxide or propylene oxide into the interior of the diffusion bag, heating the gas sterilant to an appropriate temperature, maintaining the temperature of the gas sterilant for a sufficient time to achieve sterilization, or at least sanitization, of the musical wind instrument, and removing the diffusion bag from the sterilization chamber or room with the musical wind instrument contained therein.
In a first aspect of the first embodiment, the sterilizing atmosphere is created within the interior of the gas diffusion bag by introducing a unit dose of ethylene oxide into the interior of the diffusion bag by a remotely-activated cartridge that releases 100% ethylene oxide gas into the diffusion bag upon activation by an external trigger. The unit dose of ethylene oxide is measured in relation to the volume of the interior of the gas diffusion bag. The ethylene oxide gas is heated to an appropriate sterilization temperature of about 45° C. to about 55° C., and maintained at such temperature for a sufficient time of about 4 to about 16 hours to achieve sterilization. After completion of sterilization, residual ethylene oxide gas molecules absorbed by gas-absorbent materials of the musical wind instrument and contained within the diffusion bag and the sterilization chamber are substantially removed by purging and exhausting ethylene oxide gas molecules for a sufficient time of about 16 to 24 hours to the outside atmosphere.
The gas diffusion bag is constructed of a suitable material that is tear-resistant and allows ethylene oxide to diffuse outwardly from the interior of the diffusion bag, such as, although not limited to, low density polyethylene.
In a second embodiment of the invention, the ethylene oxide gas is introduced into the interior of the gas diffusion bag to create the sterilizing atmosphere by a gas cylinder injector system. The gas cylinder injector system contains a gas cylinder containing 100% ethylene oxide and is equipped with an adjustably connected injector. The injector is inserted into the gas diffusion bag, withdraws or evacuates air from the diffusion

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of sterilization of musical wind instruments does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of sterilization of musical wind instruments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of sterilization of musical wind instruments will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2913836

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.