Method of shaping semisolid metals

Metal founding – Process – Shaping liquid metal against a forming surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C164S113000, C164S122000, C164S127000, C164S900000

Reexamination Certificate

active

06769473

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a method of shaping semisolid metals. More particularly, the invention relates to a method of shaping semisolid metals, in which a liquid alloy having crystal nuclei at a temperature not lower than the liquidus temperature or a partially solid, partially liquid alloy having crystal nuclei at a temperature not lower than a molding temperature is fed into an insulated vessel having a heat insulating effect, holding the alloy for a period from 5 seconds to 60 minutes as it is cooled to the molding temperature where a specified liquid fraction is established, thereby generating fine primary crystals in the alloy solution and the alloy is shaped under pressure. The invention also relates to an apparatus for implementing this method.
More particularly, the invention further relates to a method of shaping semisolid metals, in which a liquid alloy having crystal nuclei and at a temperature not lower than the liquidus temperature or a partially solid, partially liquid alloy having crystal nuclei and at a temperature less than the liquidus temperature but not lower than the molding temperature is poured into a holding vessel, cooled at an average cooling rate in a specified range and held as such until just prior to the start of shaping under pressure, whereby fine primary crystals are generated in the alloy solution and the alloy within the holding vessel is temperature adjusted by induction heating such that the temperatures of various parts of the alloy fall within the desired molding temperature range for the establishment of a specified fraction liquid not later than the start of shaping and the alloy is recovered from the holding vessel, supplied into a forming mold and shaped under pressure.
The invention also relates to a method of shaping semisolid metals, in which a molten aluminum or magnesium alloy containing a crystal grain refiner which is maintained superheated to less than 50° C. above the liquidus temperature is poured directly into a holding vessel without using any cooling jig and held for a period from 30 seconds to 30 minutes as the melt is cooled to the molding temperature where a specified liquid fraction is established such that the temperature of the poured alloy which is either liquid and superheated to less than 10° C. above the liquidus temperature or which is partially solid, partially liquid and less than 5° C. below the liquidus temperature is allowed to decrease from the initial level and pass through a temperature zone 5° C. below the liquidus temperature within 10 minutes, whereby fine primary crystals are generated in the alloy solution, and the alloy within said holding vessel is temperature adjusted by induction heating such that the temperatures of various parts of the alloy fall within the desired molding temperature range for the establishment of a specified fraction liquid not later than the start of shaping and the alloy is recovered from the holding vessel, supplied into a forming mold and shaped under pressure.
2. Background Information
Various methods for shaping semisolid metals are known in the art. A thixo-casting process is drawing researchers' attention these days since it involves a fewer molding defects and segregations, produces uniform metallographic structures and features longer mold lives but shorter molding cycles than the existing casting techniques. The billets used in this molding method (A) are characterized by spheroidized structures obtained by either performing mechanical or electromagnetic agitation in temperature ranges that produce semisolid metals or by taking advantage of recrystallization of worked metals. On the other hand, raw materials cast by the existing methods may be molded in a semisolid state. There are three examples of this approach; the first two concern magnesium alloys that will easily produce an equiaxed microstructure and Zr is added to induce the formation of finer crystals [method (B)] or a carbonaceous refiner is added for the same purpose [method (C)]; the third approach concerns aluminum alloys and a master alloy comprising an Al-5% Ti-1% B system is added as a refiner in amounts ranging from 2-10 times the conventional amount [method (D)]. The raw materials prepared by these methods are heated to temperature ranges that produce semisolid metals and the resulting primary crystals are spheroidized before molding. It is also known that alloys within a solubility limit are heated fairly rapidly up to a temperature near the solidus line and, thereafter, in order to ensure a uniform temperature profile through the raw material while avoiding local melting, the alloy is slowly heated to an appropriate temperature beyond the solidus line so that the material becomes sufficiently soft to be molded [method (E)]. A method is also known, in which molten aluminum at about 700° C. is cast to flow down an inclined cooling plate to form partialy molten aluminum, which is collected in a vessel [method (F)].
These methods in which billets are molded after they are heated to temperatures that produce semisolid metals are in sharp contrast with a rheo-casting process (G), in which molten metals containing spherical primary crystals are produced continuously and molded as such without being solidified to billets. It is also known to form a rheo-casting slurry by a method in which a metal which is at least partially solid, partially liquid and which is obtained by bringing a molten metal into contact with a chiller and inclined chiller is held in a temperature range that produces a semisolid metal [method (H)].
Further, a casting apparatus (I) is known which produces a partially solidified billet by cooling a metal in a billet case either from the outside of a vessel or with ultrasonic vibrations being applied directly to the interior of the vessel and the billet is taken out of the case and shaped either as such or after reheating with r-f induction heater.
However, the above-described conventional methods have their own problems. Method (A) is cumbersome and the production cost is high irrespective of whether the agitation or recrystallization technique is utilized. When applied to magnesium alloys, method (B) is economically disadvantageous since Zr is an expensive element and concerning method (C), in order to ensure that carbonaceous refiners will exhibit their function to the fullest extent, the addition of Be as an oxidation control element has to be reduced to a level as low as about 7 ppm, but then the alloy is prone to burn by oxidation during the heat treatment just prior to molding and this is inconvenient in operations.
In the case of aluminum alloys, about 500 &mgr;m is the size that can be achieved by the mere addition of refiners and it is not easy to obtain crystal grains finer than 100 &mgr;m to 200 &mgr;m. To solve this problem, increased amounts of refiners are added in method (D), but this is industrially difficult to implement because the added refiners are prone to settle on the bottom of the furnace; furthermore, the method is costly. Method (E) is a thixo-casting process which is characterized by heating the raw material slowly after the temperature has exceeded the solidus line such that the raw material is uniformly heated and spheroidized. In fact, however, an ordinary dendritic microstructure will not transform to a thixotropic structure (in which the primary dendrites have been spheroidized) upon heating. According to method (F), partially molten aluminum having spherical particles in the microstructure can be obtained conveniently but no conditions are available that provide for direct shaping.
Moreover, thixo-casting methods (A)-(F) have a common problem in that they are more costly than the existing casting methods because in order to perform molding in the semisolid state, the liquid phase must first be solidified to prepare a billet, which is heated again to a temperature range that produces a semisolid metal. In addition, the billets as t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of shaping semisolid metals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of shaping semisolid metals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of shaping semisolid metals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.