Method of shaping a spherical body and apparatus therefor

Plastic article or earthenware shaping or treating: apparatus – Means feeding fluent stock from plural sources to common... – Extrusion shaping means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C425S142000, C425S308000, C425S466000

Reexamination Certificate

active

06234779

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method of shaping a spherical body from a continuously fed cylindrical body consisting dough crust and a filling. The invention relates also to the apparatus for shaping a spherical body from a continuously fed cylindrical body.
Japanese Utility Model Publication No. 60-85178 (issued on Jun. 12, 1985) discloses a cutter assembly comprising a plurality of shutters in a guide and means to slide the shutters whereby bar foodstuffs are cut. The shutters each have two sliding faces. When one shutter is moved, the other shutters are forced against one another, causing the shutters to form a center opening or close it.
U.S. Pat. No. 4,883,678 discloses a method for shaping a spherical body consisting of dough crust and filling, in which a continuously fed cylindrical body, consisting of dough crust and a filling, is constricted by at least three sliding members which form an opening or closes it. The members slide one each other so as to constrict the cylindrical body. U.S. Pat. Nos. 4,734,024 and 4,767,304 disclose similar apparatus for shaping a spherical body. The apparatus comprises at least three sliding members which form an opening or closes it.
According to the aforesaid prior art designs, and one sliding member is driven to move the other sliding members, so as to form an opening or to close the opening. Because the sliding members are not simultaneously moved by a driving mechanism, less force is received by the last sliding member, causing the sliding members unable to accurately cut off the leading part of the continuously fed cylindrical body. When a spherical body is formed from the continuously fed cylindrical body, the filling may leak out of the spherical body. According to FIGS. 18 and 19 of U.S. Pat. No. 4,767,304, two pins 99, 100 fixed to the sliders are provided and connected to a pair of the members in order to facilitate the sliding operation. However, because the inner sliding surfaces of the sliding members rub against one another during the sliding operation, the sliding members wear quickly with use. When the sliding members start to wear, they cannot positively cut off the continuously fed cylindrical body.
SUMMARY OF THE INVENTION
The present invention has been accomplished to provide a spherical body shape forming apparatus, which eliminates the drawbacks of the prior art designs. It is one object of the present invention to provide a spherical body shape forming apparatus, which positively simultaneously drives cutter members between two positions to form a center opening or close it. It is another object of the present invention to provide a spherical body shape forming apparatus, which drives cutter members to achieve a long stroke for cutting a big diameter of cylindrical body consisting of dough crust of a filling. It is another object of the present invention to provide a spherical body shape forming apparatus, which has conveyer means to carry the shape formed spherical body to a spherical body collector, and fender means to stop the shape formed spherical body from falling out of the conveyer. It is still another object of the present invention to provide a spherical body shape forming apparatus, which has means to receive residual dough crust and to guide residual dough crust out of the apparatus, enabling the cutter members to be moved smoothly between the close position and the open position. According to one aspect of the present invention, the apparatus comprises a holder frame, the holder frame comprising a center opening, an annular groove around the center opening, a bearing portion around the annular groove for receiving a cutter assembly, a plurality of vertical sliding contact walls disposed at different angles around the bearing portion and equiangularly spaced from one another, and a plurality of triangular recesses respectively formed on a top side wall thereof corresponding to the vertical sliding contact walls; an annular rotary wheel mounted in the holder frame and rotated clockwise and counter-clockwise alternatively within a limited angle in the annular groove, the annular rotary wheel comprising a plurality of upright pegs equiangularly spaced at a top sidewall thereof; a cutter assembly coupled to the rotary wheel, the cutter assembly comprising a plurality of triangular cutter members respectively mounted on the upright wheel and arranged in sliding contact with each other and moved with the rotary wheel between a first position where the cutter members form a center opening, and a second position where the center opening is closed, the cutter members each comprising an elongated, recessed bottom sliding coupling hole respectively coupled to the upright pegs of the rotary wheel, an angled notch at a rear side, and a rear protruding portion above the angled notch; and a material feeder controlled to feed a cylindrical body consisting of a dough crust covering layer and a filling, for enabling the cylindrical body to be cut and shaped into a spherical body by the cutter members upon each clockwise and counter-clock wise alternative rotation cycle of the annular wheel. According to another aspect of the present invention, the holder frame further comprises at least one sliding slot respectively disposed between the vertical sliding bearing walls and the bearing portion, and the cutter members of the cutter assembly include at least one having a bottom locating flange respectively coupled to the at least one sliding slot in the holder frame. According to still another aspect of the present invention the holder frame further comprises a metal pressure plate covered on one vertical sliding contact wall, and an adjustment screw stopped at the metal pressure plate against the cutter assembly and rotated to move the metal pressure plate relative to the cutter assembly. According to still another aspect of the present invention, the holder frame further comprises a plurality of vertical slots respectively disposed between each two adjacent vertical sliding contact walls, and the cutter members each further comprise a receiving hole on one vertical sidewall for receiving residual dough crust, enabling residual dough crust to fall out of the holder frame through the vertical slot between each two adjacent vertical sliding contact walls. According to still another aspect of the present invention, the cutter members each further comprise a front cutting edge formed of two symmetrical, vertically spaced sets of nosings and treads. According to still another aspect of the present invention, a conveyer is spaced below the center opening of the holder frame and for carrying produced spherical body to a spherical body collector, and a
-shaped fender is provided to stop produced spherical body from falling out of the conveyer.


REFERENCES:
patent: 4734024 (1988-03-01), Tashiro
patent: 4767304 (1988-08-01), Tashiro
patent: 4883678 (1989-11-01), Tashiro
patent: 5223277 (1993-06-01), Watanabe et al.
patent: 5967025 (1999-10-01), Tashiro
patent: 60-85178 (1985-06-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of shaping a spherical body and apparatus therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of shaping a spherical body and apparatus therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of shaping a spherical body and apparatus therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2514437

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.