Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Light application
Reexamination Certificate
1998-05-12
2001-04-10
Dvorak, Linda C. M. (Department: 3739)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Light application
C607S090000, C606S009000, C606S027000, C606S032000
Reexamination Certificate
active
06214034
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to dermatological surgery and, more specifically, to a method of selective photothermolysis that allows the destruction of targets, such as varicose veins, that are too large to be destroyed by presently known methods without damaging the surrounding healthy tissue, and targets such as plaque psoriasis.
BACKGROUND OF THE INVENTION
Selective photothermolysis is a surgical method, introduced by Anderson and Parrish in 1983 (“Selective Photothermolysis: Precise Microsurgery by Selective Absorption of Pulsed Radiation”, Science, Vol. 220, pp. 524-527), for destroying certain diseased or unsightly tissue, on or near the skin, with minimal damage to the surrounding healthy tissue. The tissue to be destroyed must be characterized by significantly greater optical absorption at some wavelength of electromagnetic radiation than the surrounding tissue. The method consists of irradiating the target and the surrounding tissue with pulsed electromagnetic radiation, usually visible radiation, that is preferentially absorbed by the target. The energy and duration of the pulses is such that the target is heated to between about 70° C. and about 80° C., at which temperature the proteins of the target coagulate. Because the target absorbs the incident radiation much more strongly than the surrounding tissue, the surrounding tissue is heated negligibly.
Usually, the radiation source is a laser, for example a flashlamp-pulsed dye laser. A laser source has the advantage of being inherently monochromatic. Other sources include broad band sources used in conjunction with narrow band filters, as described, for example, by Gustaffson in Patent No. WO 91/15264. A similar device, called the “Photoderm-VL”, is manufactured by ESC Medical Systems.
Suitable targets for selective photothermolysis include birthmarks, port-wine stains, spider veins, and varicose veins, all of which tend to be much redder than the surrounding tissue because of their higher concentration of oxyhemoglobin-containing red blood cells. Anderson and Parrish used light of a wavelength of 577 nanometers, corresponding to the 577 nanometer oxyhemoglobin absorption band. It was subsequently determined (Tian, Morrison, and Kurban, “585 nm for the Treatment of Port-Wine Stains”, Plastic and Reconstructive Surgery, vol. 86 no. 6 pp. 1112-1117) that 585 nanometers is a more effective wavelength to use.
One constraint on the pulse duration is that the surrounding tissue must not be heated to the point that it, too, begins to coagulate. As the target is heated, heat begins to diffuse from the target to the cooler surrounding tissue. To keep the surrounding tissue from being heated to the point of damage, the pulse length must be kept on the order of the target's thermal relaxation time. For relatively small targets, such as birthmarks, port-wine stains, and spider veins, typical pulse lengths are on the order of hundreds of microseconds. For varicose veins, pulse lengths on the order of milliseconds should be used.
A complication arises in the treatment of varicose veins by selectiv photothermolysis. The normal tissue surrounding varicose veins typically includes other blood vessels, notably capillaries, that also absorb the incident radiation but, being much smaller than the varicose veins, have much shorter thermal relaxation times. Therefore, heat diffusing from these other blood vessels into the surrounding tissue tends to heat the surrounding tissue to the point of damage, thereby causing scarring. Recently, selective photothermolysis also has been used to treat psoriatic skin tissue.
Psoriasis is a non contagious skin disorder that most commonly appears as inflamed swollen skin lesions covered with silvery white scale. This most common type of psoriasis is called “plaque psoriasis”.
Psoriasis comes in many different variations and degrees of severity. Different types of psoriasis display characteristics such as pus-like blisters (pustular psoriasis), severe sloughing of the skin (erythrodermic psoriasis), drop-like dots (guttate psoriasis) and smooth inflamed legions (inverse psoriasis). The degrees of severity of psoriasis are divided into three important categories: mild, moderate and severe.
Skin cells are programmed to follow two possible programs: normal growth or wound healing. In a normal growth pattern, skin cells are created in the basal cell layer, and then move up through the epidermis to the stratum corneum, the outermost layer of the skin. Dead cells are shed from the skin at about the same rate as new cells are produced, maintaining a balance. This normal process takes about 28 days from cell birth to death.
When skin is wounded, a wound healing program is triggered, also known as regenerative maturation. Cells are produced at a much faster rate, theoretically to replace and repair the wound. There is also an increased blood supply and localized inflammation. In many ways, psoriatic skin is similar to skin healing from a wound or reacting to a stimulus such as infection.
Lesional psoriasis is characterized by cell growth in the alternate growth program. Although there is no wound at a psoriatic lesion, skin cells, also referred to as keratinocytes, behave as if there is. These keratinocytes switch from the normal growth program to regenerative maturation. Cells are created and pushed to the surface in as little as 2-4 days, and the skin cannot shed the cells fast enough. The excessive skin cells build up and form elevated, scaly lesions. The white scale (called “plaque”) that usually covers the lesion is composed of dead skin cells, and the redness of the lesion is caused by increased blood supply to the area of rapidly dividing skin cells.
There is thus a widely recognized need for a method and a device adapted for home use by a patient for selective photothermolysis that is effective in removing larger surgical targets, such as varicose veins, without peripheral damage, and that can be used in treatment of psoriasis.
SUMMARY OF THE INVENTION
According to the present invention there is provided a method of selective photothermolysis of a target within surrounding tissue, comprising the steps of: (a) heating the target and the surrounding tissue above normal body temperature; and (b) heating the target to between about 70° C. and about 80° C.
According to the present invention there is provided a device for selective photothermolysis of a target within surrounding tissue, comprising: (a) means for generating broad-band electromagnetic radiation; and (b) means for generating at least one pulse of substantially monochromatic electromagnetic radiation, each of said at least one pulse being substantially simultaneous with said broad-band electromagnetic radiation.
The method of the present invention is based on the fact that the rate of heat diffusion from a warm body to a cold body is proportional to the thermal gradient between the bodies. Therefore, heating the surrounding tissue to a temperature higher than normal body temperature, but not high enough to cause damage, and only then heating the target to the point of coagulation, creates an environment in which the thermal gradient between the target and the surrounding blood vessels, on the one hand, and the other surrounding tissue, on the other hand, is sufficiently small that the surrounding tissue is not damaged. In the context of the present invention, “higher than normal body temperature” means a temperature of at least about 40° C., but preferably between about 55° C. and about 65° C. Furthermore, the pulse of monochromatic light used to heat the target may be of lower power and shorter duration than in the prior art, because the target is heated from a higher initial temperature.
The device of the present invention accomplishes this end by heating the surrounding tissue using broad-band electromagnetic radiation. The scope of the present invention includes all effective wavelengths of electromagnetic radiation, and effective spectral bands for this purpose include microwave radiation; but the preferred spect
Dvorak Linda C. M.
Fenster & Company Patent Attorneys Ltd.
Kearney R.
Radiancy Inc.
LandOfFree
Method of selective photothermolysis does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of selective photothermolysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of selective photothermolysis will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2508095