Method of route planning in a navigation system

Data processing: vehicles – navigation – and relative location – Navigation – Determination of travel data based on the start point and...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S026000, C701S211000

Reexamination Certificate

active

06701248

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method of route planning in a navigation system in which the user makes basic settings for the route to be planned, and the route is defined on the basis of optimization criteria. The present invention also relates to a navigation system that is suitable for carrying out the method.
BACKGROUND INFORMATION
Conventional navigation systems for assisting a road user, in particular the driver of a car generally include the following subsystems: a) digital road map, b) computing module for calculating a travel route, c) position locating unit, d) system management unit, e) sensors for detecting vehicle movements, f) input unit, and g) output unit for operation and navigation. Generally, the route is calculated on the basis of different optimization parameters that must either be set in advance by the user or are already permanently incorporated into the algorithms at the factory for the purpose of calculating the route. Optimization takes place by rating the relevant route segment elements contained in a database, which may include, for example, length, possible speed, type of road, and the like. The optimum route can be selected, for example, by compiling the fastest or the shortest route. The user's personal preferences may influence the way in which these items are weighted.
The optimization preset at the factory is usually parameterized for an “average driver” and therefore provides an optimum route only for such a driver. However, not all drivers feel the same way about the route recommendation. For example, they may prefer or avoid certain road types, or the average speed on the highway may vary depending on the vehicle type, driver temperament, or the like. At present, these individual driving patterns and other route selection preferences (for example, a preference for scenic routes) are, at best, usually included by manual entry of preset parameters, which can usually be done only when the vehicle is stationary. This makes the navigation system more complex and less user-friendly, particularly as the number of parameters increases, so that only experienced or technically adept users may be expected to be able to reasonably customize all relevant parameters.
SUMMARY
An object of the present invention is to improve a navigation system of the type mentioned in the preamble in a way that makes route planning more comprehensible to the user and enables the user to easily influence route planning.
A method of route planning in a navigation system is provided. The user makes basic settings for the route to be planned (starting point, destination, time settings, etc.), and the route is defined on the basis of optimization criteria (shortest route, fastest time, etc.). In a first step, a quantity of first travel routes is determined on the basis of location-independent and situation-specific user preferences. If necessary, this quantity may also include only a single suggested travel route. In a second step, the travel routes determined in the first step are recalculated in sub-segments on the basis of location-dependent and situation-specific user preferences. During this phase, for example, a decision may be made on whether to locally select a route through town or a route by-passing town. Finally, in a third step, the determined travel routes are prioritized on the basis of at least one rating criterion so that they may be suggested to the user in a scaled order.
The hierarchical prioritization according to the example embodiment of the present invention, i.e., scaled inclusion of optimization criteria in route planning, yields a planning process whose execution remains comprehensible even to nontechnically adept users. This therefore enables users to more easily identify and, if necessary, correct undesired planning choices.
The optimization criterion applied in the first step may be preset by the user at the beginning of the planning procedure. This makes it possible to take into account a currently valid primary optimization criterion, for example a preference for the most scenic route, so that the completed route planning will better meet the user's current objective. In addition, specifying the primary optimization criterion makes the route recommendation as a whole easy to understand. The optimization criterion preset by the user may be parameterized on the basis of preset location-independent and situation-specific user preferences. This means that the optimization criterion serves as a guideline on the basis of which the user preferences to be considered are selected. The parameters of the optimization criterion are presettable at the factory, by the user, and/or by other systems outside the navigation system. The optimization criterion entered by the user may also be used to prioritize the route recommendations made in the various steps of the method.
The parameters in the first step may be related to the route, segment, and/or sub-segment. They may be advantageously derived from at least one route segment characteristic and/or the environmental characteristics of route segments (for example, nature reserves, developed areas) or assigned objects (for example, tourist sights or certain kinds of stores).
To the extent that the parameters are preset for carrying out the first step of the method, user-specific and situation-related deviations may be automatically determined and then made available to external devices for statistical evaluation of user behavior. The traffic route network on which the route calculation is based may be limited on the basis of typical user behavior and/or the distance or traveling time between the starting point and destination.
The user preferences for the route selection, on which the second step of the method is based, may be presettable by the user or by an external system. The user preferences to be considered are selectable according to situation and independently of the first step. In particular, they may be independent of the primary optimization criterion that may have been used as a basis in the first step. In the case of the primary optimization criterion “shortest route”, this makes it possible, for example, to locally select a circumventing, and thus longer, route by-passing a town if the user would rather not drive through major cities during rush hour.
In the third step of the method according to the present invention, the travel routes determined in the first and second steps are prioritized on the basis of at least one rating criterion. The number of suggested travel routes may also be restricted by a preset limit for the respective rating criterion.
The rating criterion used in the third step may include at least one of the parameters: travel time or route length. These criteria may be important, so they are typically not ignored when planning a route.
The rating criterion may also include the parameters “maximum travel time” and/or “maximum route distance.” This means that travel routes which exceed the values of the specified parameters are either not displayed or are at least assigned a very negative rating. The values for the parameters “maximum travel time” and/or “maximum route distance” may be determinable on the basis of preset situation-dependent user preferences or those determined automatically by external devices. In particular, these parameters may be derived from the destination, purpose of the trip, and/or travel route.
In an example embodiment of the present invention, the user may select, after each of the three completed sub-steps, one of the travel routes determined therein. The determined travel routes may be visually and/or acoustically presented to the user along with their respective rating after each of the steps. This enables the user to track and immediately understand the progress of route planning, since different criteria for selecting the routes are applied in sequence. The optimization procedure thus remains transparent to the user. In addition, the procedure may be customized to the user, since at any time he may select a partia

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of route planning in a navigation system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of route planning in a navigation system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of route planning in a navigation system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3242427

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.