Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Coated or impregnated woven – knit – or nonwoven fabric which... – Coating or impregnation functions biologically
Reexamination Certificate
1999-07-27
2002-11-19
Cole, Elizabeth M. (Department: 1771)
Fabric (woven, knitted, or nonwoven textile or cloth, etc.)
Coated or impregnated woven, knit, or nonwoven fabric which...
Coating or impregnation functions biologically
C442S152000, C442S164000, C442S181000, C442S199000, C442S304000, C442S311000, C442S327000, C442S361000, C442S415000, C442S416000, C008S115540, C008S147000
Reexamination Certificate
active
06482756
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to antimicrobial fabrics which are treated with a specific durable and regenerable halamine/chlorine system and methods of removing residual active chlorine from the target textile surface without reducing the antimicrobial activity of the textile. Such methods comprise contacting an amine-treated fabric first with a halogen-based bleach (or other halogenated liquid) to produce halamines at the fabric surface, and subsequently washing the resultant halogenated fabric with a reducing agent which removes the residual, unbonded halogen (such as chlorine) from the fabric surface but does not, surprisingly, remove the halamine halogen. The remaining halamine halogen thus provides the desired antimicrobial activity. As a result, a method of substantially reducing fabric discoloration, odor, and potential skin irritation due to the presence of amounts of residual unbonded halogen (such as chlorine) on the target fabric surface is provided which simultaneously permits sufficient amounts of halamine halogen (such as chloramine chlorine) to remain on the target fabric for optimum microbiocidal properties. A fabric treated in accordance with this method is also provided.
DISCUSSION OF THE PRIOR ART
There has been a great deal of attention in recent years given to the hazards of antimicrobial contamination from potential everyday exposure. Noteworthy examples of such concern include the fatal consequences of food poisoning due to certain strains of
Eschericia coli
being found within undercooked beef in fast food restaurants; Salmonella contamination causing sicknesses from undercooked and unwashed poultry food products; and illnesses and skin infections attributed to
Staphylococcus aureus
, yeast, and other unicellular organisms. With such an increased consumer interest in this area, manufacturers have begun introducing antimicrobial agents, such as Triclosan, available from Ciba-Geigy under the tradename Irgasan®, within various household products. For instance, certain brands of polypropylene cutting boards, liquid soaps, etc., all contain this very effective antimicrobial compound. Generally, the incorporation of triclosan within liquid or polymeric media has been relatively simple. However, there is a long-felt need to provide effective, durable, and long-lasting antimicrobial characteristics within textiles, in particular apparel fabrics, which is extremely difficult to accomplish with triclosan. There are commercially available textile products comprising acrylic and/or acetate fibers co-extruded with triclosan (for example Hoechst Celanese markets such acetate fabrics under the name Microsafe™ and Courtaulds markets such acrylic polymer fabrics under the name Amicor™). However, such an application is limited to those types of fibers; it does not work specifically for and within polyester, polyamide, cotton, lycra, etc., fabrics.
Very recently, work has been undertaken to provide antimicrobial finishes to fabrics through the covalent bonding of certain nitrogen-containing groups, such as hydantoin, as merely one example, to individual fibers (such as cellulose fibers). Such nitrogen-containing groups (which may also include imines, amides, amines, imides, and the like) provide sites for the bonding and retention of chlorines (or other halogens) which ultimately provide the desired N-halamines which produce the desired antimicrobial characteristics. Such chlorines, and the like, are easily introduced to the textile surface through a washing process (such as with a chlorine bleach) during which some of the chlorines become bonded with the free accessible nitrogens on the hydantoins bonded to the fabric surface to produce N-halamines. Such N-halamines are, as noted above, very strong oxidants and are very effective against microorganisms. These halamines, this process, and the fabrics made thereby are more thoroughly discussed in U.S. Pat. 5,882,357 to Sun et al., herein entirely incorporated by reference and fabrics treated with certain nitrogen-containing compounds (again such as hydantoin, imines, imides, amides, and the like) are herewith denoted by the term “amine-treated fabric.” This term is intended to encompass all fabrics which are treated with nitrogen-containing compounds which ultimately form of N-halamines upon contact with halogen bleaches (or other halogenated liquids, including solid bleach-containing detergents which dissolve in water to form a liquid). Such fabrics are formed in accordance with the Sun et al. patent, noted above, as an example, and the nitrogen-containing compounds include those which include triazine, hydantoin, imidazolidinone groups, and the like. The term “halamine-treated fabric” thus is intended to encompass any amine-treated fabric which has been contacted with and has retained halogens within the nitrogen-containing groups on the amine-treated fabric surface. Such halamine-treated fabric provides long-term wearability and also allows for replenishment of any removed or used antimicrobial halalamine halogen (such as chloramine chlorine). Subsequent washes with bleach, for example, will create halamines by reacting with “vacant” hydantoin groups. Thus, although the chlorine (or other halogen) may be removed or rendered unusable for antimicrobial activity, fresh supplies of chlorine, and the like, may be introduced and bonded with the hydantoin surface treatment over time to regenerate the microbiocidal capability of the target fabric.
This halamine treatment unfortunately also results in a substantial amount of adsorbed active chlorine (or other halogens) remaining on the surface of the fabric in addition to covalently bonded halamines, after each bleach (or similar halogen-containing liquid) wash. Such residual adsorbed halogen (chlorine, for instance), as is well known, produces an highly unpleasant odor, discolors fabrics, particularly those with dyes and colorants therein, and can cause irritation to a wearer's skin (if the target fabric is incorporated within apparel, for instance). Such circumstances associated with this halamine antimicrobial system have proven problematic for the incorporation of such a promising antimicrobial system and process within apparel and other textile applications in which human contact occurs. Thus, there has been noticed a necessity for providing a subsequent treatment for readily removing substantially all of the unbonded residual active chlorine (or other halogen) from the target fabric surface while also permitting the continued bonding of the antimicrobial chlorine within the halamine. Such a procedure would reduce the deleterious odor and skin irritation prevalent in the fabrics now produced with this method. However, the prior art has not provided such an improvement for halamine antimicrobial systems to date.
REFERENCES:
patent: 4236891 (1980-12-01), Scardera et al.
patent: 4395454 (1983-07-01), Baldwin
patent: 4418038 (1983-11-01), Theeuwes
patent: 4467013 (1984-08-01), Baldwin
patent: 4919998 (1990-04-01), Goad et al.
patent: 5196139 (1993-03-01), Moschner
patent: 5238463 (1993-08-01), Arini et al.
patent: 5490983 (1996-02-01), Worley et al.
patent: 5670646 (1997-09-01), Worley et al.
patent: 5700742 (1997-12-01), Payne
patent: 5882357 (1999-03-01), Sun et al.
AATCC Method 114-1971, “Chlorine Retention and Scorch,” Jan., 1972.
Kruschwitz, Jacqueline I., “Chloramines and Bromamines,”Encyclopedia of Chemical Technology, 4thEdition (John Wiley & Sons), 1997.
Milliken & Company
Moyer Terry T.
Parks William S.
LandOfFree
Method of retaining antimicrobial properties on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of retaining antimicrobial properties on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of retaining antimicrobial properties on a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2983115