Method of removing deposits from a conduit wall

Cleaning and liquid contact with solids – Processes – Using solid work treating agents

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S006000, C134S022100, C134S022110, C134S022120, C134S022180, C134S034000, C134S042000, C015S104090, C015S104310, C015S104095

Reexamination Certificate

active

06187105

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a method of cleaning a conduit including downpipe, by which a cleaning tool to be rotatingly driven via a flexible shaft, in particular a helical spring, is subjected to a longitudinal feed extending in conduit direction for removing deposits in the pipe, while at the same time flushing water is allowed to flow into the conduit for carrying away the cuttings above the removal area, and below the removal area flushing water is injected into the conduit in outflow direction with excess pressure.
2. Description of the Prior Art
Conduits, in particular sewer and drain pipes, are more and more constricted in their inside flow cross-section due to soiling and encrustation, until the amounts of water produced can no longer flow off and there is a backpressure and as a result thereof damages caused by water. In order to remedy this problem and prevent the conduit from clogging or to clear a clogged pipe, there already exist cleaning methods where the deposits are worked off mechanically and swept away. For this purpose, a chain centrifuge serving as cleaning tool and rotating via a drivable helical spring is introduced from the top into a downpipe of a conduit to be cleaned, where the chain parts of the chain centrifuge strike against the deposits and work off the deposits on the wall. However, these chain centrifuge tools can hardly be metered in their effect, the conduits are subjected to a considerable, often already damaging impact load, and the tool advanced substantially due to gravity is hardly able to overcome curvatures of the conduit, as they frequently occur for instance as gravity brakes in higher downpipes or in the case of mutually offset pipe sections. In addition, due to the impact effect of the chain centrifuge relatively coarse pieces and plate-shaped parts of the hard deposits are detached and blasted off, which fall downwards and/or are swept along with the flushing water and advance into the yet uncleaned, constricted pipe, where cloggings caused by the cuttings are then virtually inevitable. The newly introduced water or waste water flowing into the downpipe can no longer flow off, and there is a risk of backpressure along with the great consequential damages. The known cleaning methods therefore remain unsatisfactory and can only be used successfully in simple cases because of the involved risk of a damage exceeding the benefits.
Moreover, there already exist all kinds of cleaning methods for cleaning horizontal conduits, which methods employ milling cutters such as rotary water milling cutters (DE 44 16 721 C), root milling heads (DE 34 27 371 A) or the like, which are drawn in feed direction or advanced via an ejection of pressurized water, which methods are, however, not suited for cleaning strongly encrusted downpipes. Furthermore, there are known methods for expanding the inside cross-section of a chimney (DE 195 30 880 A), where milling heads with stepped diameters are introduced into the chimney from the top, which methods cannot be used for cleaning downpipes of a conduit, as pipe curvatures cannot be taken into account and the risk of clogging by the detached cuttings would be too great.
SUMMARY OF INVENTION
It is therefore the object underlying the invention to eliminate these deficiencies and provide a method as described above, which ensures an economic and reliable cleaning of all kinds of conduits without a risk of clogging or backpressure. Moreover, there should be created an expedient apparatus for carrying out this method.
This object is solved by the invention in that the deposits in the pipe are removed in a manner known per se by a milling operation with a longitudinal feed opposite to the outflow direction, for which purpose the milling cutter used as cleaning tool and introduced into the conduit below the downpipe is drawn from the front side in feed direction and rotatingly driven from the rear side in feed direction. Due to the cleaning operation advanced in upstream direction, the soilings and deposits removed can be discharged in downstream direction through the pipe already cleaned, and there will be no constriction of the pipe cross-section providing a risk of clogging along the conveying path. The flushing water flowing off from the top carries along the cuttings in flow direction, and the pressurized water injected in downstream direction below the tool accelerates and completes this discharge. Moreover, the deposits and soilings are worked off by the milling operation not in large parts, but in relatively small pieces, which substantially facilitates the removal and ensures a neat and complete discharge of the material by means of the flushing water. Drawing the milling cutter along with the correspondingly adjustable driving speed furthermore allows to specifically adapt the milling operation to the respective conditions, so that a proper and efficient cleaning is obtained. The cable-operated longitudinal feed of the milling cutter can likewise sensitively be adjusted to the respective course of the conduit, so that pipe curvatures and other changes in the direction of the conduit can easily be handled without impeding the milling cleaning. Depending on the local conditions and the degree of soiling and deposition, the cleaning operation is performed in several steps by means of milling cutters having stepwise increased diameters, and there can always be ensured a mode of operation careful both with respect to the pipe and with respect to the tool.
For performing the method various means and apparatuses known per se may be used, which in addition to supplying and discharging the flushing water provide for the drive of the flexible shaft for the tool drive and a traction cable with cable winch for the longitudinal feed of the cleaning tool. It is particularly advantageous when as cleaning tool there is provided a milling head known per se, which is rotationally symmetrical with respect to the drive axle due to the shaft connection and on its rear end face has the shaft connection and on its front end face has an attachment lug, where the milling head comprises a body of rotation as milling body with a generatrix sloping towards the attachment lug in an arc-shaped manner, from which milling body cutter parts preferably extending along helical lines and forming cutting edges protrude on the side of the shell. This milling head can quickly be connected at one end to the traction cable producing the longitudinal feed and at the other end to a helical spring or another flexible shaft for the rotary drive, and due to its convex basic shape allows to work off deposits of various thicknesses during the longitudinal feed, which convex basic shape in addition provides for properly working off the deposits in the vicinity of pipe curvatures or the like. In addition to the required high removal effect, the cutting edges extending at an angle, preferably helically with respect to the axis of rotation also involve a removal effect for the material worked off, which together with the flushing water ensures a proper, easy discharge of the cuttings. The milling body itself can be produced economically and provides a particularly resistant milling cutter of high cutting efficiency with a long service life.
Since the milling cutter undergoes a rotary movement during the longitudinal feed, and the traction cable producing the longitudinal feed should remain untwisted to prevent twist and untwist phenomena, the milling head can advantageously be attached to a traction cable by means of an associated rotary coupling to be connected on the one hand to the attachment lug of the milling head and on the other hand to the traction cable, which rotary coupling has coupling members supported so as to be rotated relative to each other about an axis of rotation extending in pull direction. These coupling members rotatable with respect to each other prevent the transmission of the rotary movement of the milling head to the traction cable and provide for a proper traction haulage of t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of removing deposits from a conduit wall does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of removing deposits from a conduit wall, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of removing deposits from a conduit wall will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2589603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.