Plastic and nonmetallic article shaping or treating: processes – Reactive gas or vapor treatment of work
Reexamination Certificate
2000-06-05
2002-05-28
Fiorilla, C A (Department: 1731)
Plastic and nonmetallic article shaping or treating: processes
Reactive gas or vapor treatment of work
C264S656000, C264S234000
Reexamination Certificate
active
06395206
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a method of removing an organic binder from a green ceramic form by oxidation of the organic binder system. More particularly, the present invention relates to such a method in which the organic binder system is oxidized in a flowing carbon dioxide containing atmosphere.
BACKGROUND ART
Ceramic articles are manufactured by mixing ceramic particles with organic binder systems and shaped into a desired form. The shaped ceramic is called a green ceramic. Thereafter, the green ceramic is fired to burn out the binder and sintered to form a solid mass.
The binder removal step is particularly critical in the manufacture of ceramic membranes. Ceramic membranes are thin walled ceramics, which can be in the form of tubes, that exhibit ion conductivity at high temperatures. Such membranes have been used within reactors for oxygen and hydrogen separations. In the practice currently employed, the binder is removed in an oxygen containing atmosphere by slow heating, less than a tenth of a degree per minute and over extended periods of time that can reach 96 hours. The slow processing rates can make the manufacture of such membranes economically unfeasible.
If the binder were burned out rapidly, it would inevitably result in breakage of the membranes. Binders are generally organic, for instance, polyethylene, methyl cellulose or polymethyl methacrylates. During heating, the binder is oxidized in air, under an exothermic reaction with oxygen, to form a gaseous mixture of carbon dioxide and water vapor. The heat released under such conditions tends to increase the combustion rate which in turn releases even more heat. If the green ceramic were heated rapidly there would be a loss of control and a thermal runaway that would cause breakage of the ceramic through the rapid expansion of the gaseous reaction products. In order to avoid this, the carbon dioxide and water vapor have to be allowed to evolve very slowly and hence, the long processing times.
Some binders, for instance, polyethylene glycol, can be removed by volatilization in a flowing atmosphere of an inert gas. The problem with such processing is that often a carbonaceous residue is left in the membrane. At the high temperatures at which ceramic membranes have to be sintered, such residue will seek oxygen from the ceramic itself to damage the ceramic. In order to prevent this, U.S. Pat. No. 4,994,436 provides a processing atmosphere in which the binder is removed in an inert processing atmosphere followed by a mild oxidizing atmosphere to remove trace amounts of carbon within the membrane. The mild oxidizing atmosphere can contain a mixture of nitrogen and up to 50% carbon dioxide to burn out carbonaceous deposits at temperatures in excess of 900° C. Similarly, in F. K. Van Diejen, Euro Ceramics Vol. 1. Processing of Ceramics, P 1356 to 1365, European Ceramic Society, carbon residues are removed from ceramics in a carbon dioxide containing atmosphere and at temperatures in excess of 800° C. Also relevant is U.S. Pat. No. 4,622,240 which discloses a firing atmosphere containing nitrous oxide to reduce soot formation.
In all of the forgoing references, the carbon dioxide or nitrous oxide containing atmosphere is used to endothermically oxidize carbon residues as opposed to the binders contained within the green ceramic to be fired. Organic binders have been removed in carbon dioxide containing atmospheres in applications other than the firing of free-standing ceramic bodies. For instance, in U.S. Pat. No. 5,302,412 a single carbon dioxide containing atmosphere is used to burn out binders in a thick film materials applied to substrates as inks to form electronic circuitry. The thick film materials consist of electrical component materials used to form conductors, resistors, and capacitors mixed with organic binder systems. As may be appreciated, there is so little thermal mass involved that heating times are typically between 5 to 15 minutes. Furthermore, since the thick film material is supported on a substrate, problems such as breakage and cracking are reduced.
As will be discussed, the present invention provides a method of removing a binder from a green ceramic form that can be accomplished at a more rapid pace than prior art techniques and without damage to the ceramic.
SUMMARY OF THE INVENTION
The present invention provides a method of removing an organic binder from a green ceramic form. The term “ceramic form” as used herein and in the claims means a shaped ceramic, such as of single or multilayered configuration, in a form comprising tubes, plates, and etc. as opposed to ceramics that are bonded to a supporting substrate such as in U.S. Pat. No. 5,302,412. In accordance with the present invention, the green ceramic form is subjected to a flowing carbon dioxide containing atmosphere having a sufficiently low oxygen content to allow at least about 60% of the organic binder to be oxidized by carbon dioxide if all of the organic binder were oxidized. The green ceramic form is heated at a rate greater than about 0.1° C. per minute to an oxidation temperature (or burn-out temperature) at which the organic binder will oxidize. The green ceramic form is maintained under oxidizing temperature conditions until at least about 90% and preferably at least about 99% by weight of the organic binder is oxidized and thus, removed within the carbon dioxide containing atmosphere.
In a process in accordance with the present invention breakage of the ceramic and/or thermal runaway is avoided by using carbon dioxide to constrain the oxidation to take place under anywhere from slightly exothermic, thermally neutral, on balance endothermic, or entirely endothermic oxidation conditions. Where some oxygen is present, the reaction can be slightly exothermic, thermally neutral or on balance endothermic. When essentially no oxygen is present, the reaction conditions will be entirely exothermic. The present invention is intended to cover all of such possibilities.
In a carbon dioxide containing atmosphere that contains a sufficiently low oxygen content to allow at least about 60% of the organic binder to be oxidized by the carbon dioxide, it is ensured that oxidation will take place under slightly exothermic conditions. In this regard, such slightly exothermic conditions can be obtained in an atmosphere that contains about 10% oxygen and about 90% carbon dioxide. Hence, slightly exothermic conditions are ensured in a carbon dioxide containing atmosphere that contains no less than about 90% carbon dioxide by volume and no more than about 10% oxygen by volume.
The oxidation of the organic binder can be anywhere thermally neutral to on balance endothermic when there is some oxygen present, such as by air leakage in a furnace, so that some of the oxidation of the organic binder is exothermic while most of the oxidation is endothermic. As the amount of oxygen content in the carbon dioxide containing atmosphere falls, the oxidation increasingly takes place with carbon dioxide so that reaction conditions become more endothermic and entirely endothermic when essentially no oxygen present. With respect to air infiltration into a treatment furnace, at carbon dioxide concentrations of over about 70% by volume, equilibrium calculations suggest that where the remainder of the atmosphere consists of air the oxidation of the organic binder will remain on balance endothermic. A treatment atmosphere containing about 60% by volume carbon dioxide is advantageous because even if the remainder of the atmosphere is air, the oxidation of the organic binder will proceed at least under thermally neutral conditions.
A preferred atmosphere is one containing at least 30% CO
2
by volume while the remaining components could be other inert gases such as nitrogen argon and etc. This being said, far lower concentrations of carbon dioxide are possible where the balance of the atmosphere is inert, for example 1% carbon dioxide, the remainder nitrogen or argon. Thus, a process in accordance with the present invention can be conducted with carbo
Apte Prasad
Prasad Ravi
Fiorilla C A
Praxair Technology Inc.
Rosenblum David M.
LandOfFree
Method of removing an organic binder from a green ceramic form does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of removing an organic binder from a green ceramic form, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of removing an organic binder from a green ceramic form will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2843517