Method of reducing flock during alkoxylation

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S607000, C568S609000, C568S611000, C568S612000, C568S616000, C568S618000, C568S621000, C568S626000, C568S630000, C568S631000, C568S632000, C568S642000, C568S664000, C568S665000, C568S667000, C568S671000, C568S687000

Reexamination Certificate

active

06444858

ABSTRACT:

FIELD OF THE INVENTION
The present invention is a method for alkoxylating organic compounds, preferably polyalkylene glycols, by exposing the organic compounds to alkylene oxide vapor which is not compressed into a liquid phase for purposes of transport or introduction into the reactor. The method results in alkoxylation products containing less, little, or no flock.
BACKGROUND OF THE INVENTION
A variety of organic materials react under suitable conditions with an adducting material, such as an alkylene oxide—particularly ethylene oxide or propylene oxide—to form alkoxylated organic materials. Typically, the alkylene oxide adducting material is compressed into liquid form for transport to and discharge into the reactor. Unfortunately, even if the alkylene oxide is decompressed into the vapor phase before the alkoxylation reaction begins, the previous compression of the alkylene oxide into the liquid phase tends to increase flock in the alkoxylation product. A method is needed by which to form alkoxylated products containing no, little, or less flock.
SUMMARY OF THE INVENTION
The present invention provides a method comprising contacting an organic compound adapted to be alkoxylated with an alkylene oxide in a reaction vessel under conditions effective to alkoxylate the organic compound. The alkylene oxide is maintained in vapor form before and during transport to said reaction vessel, during discharge into the reaction vessel, and during contact with the organic compound.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a method for producing an alkoxylation product with no, little, or less flock. According to the present method, the alkylene oxide adducting material is not compressed into liquid form in order to transport and/or to introduce the material into the alkoxylation reactor. The alkylene oxide is both transported and discharged into the reactor in the vapor phase. Without limiting the present invention to any particular theory or mechanism, it is believed that compression of ethylene oxide into the liquid phase produces minute amounts of oligomers or polymers which contribute to the formation of flock in the substrate. The present invention is believed to reduce flock by avoiding the formation of these oligomers or polymers in the alkylene oxide.
The alkoxylation reaction, itself, takes place under standard conditions. The reaction takes place at any suitable temperature, preferably from about 10° C. to about 160° C. For practical purposes, most commercial operations will be carried out in the temperature range of from about 50° C. to about 200° C.
The method is useful to alkoxylate any suitable alkoxylatable organic material. Suitable materials include, but are not necessarily limited to polyhydric, unsaturated, linear or branched alcohols, saturated alcohols, alkyl phenols, polyols, aldehydes, ketones, amines, amides, organic acids, and mercaptans. Preferred organic materials are normally selected from the group consisting of
(a) polyhydric alcohols containing a total of from about 2 to about 30 carbon atoms and having the general formula
 wherein R
1
, R
2
, and R
3
independently are selected from the group consisting of linear and branched acyclic groups, alicyclic groups, aryl groups, cyclic groups, and hydrogen, and may contain one or more functional groups selected from the group consisting of amine groups, carboxyl groups, hydroxy groups, halogen atoms, nitro-groups, carbonyl groups, and amide groups. Representative but non-exhaustive examples of various polyhydric alcohols which can be alkoxylated according to the present invention are: ethylene glycol, 1,2-propylene glycol 1,4-butanediol; 1,6-hexanediol; 1,10-decanediol; 1,3-butylene glycol; diethylene glycol; diethylene glycol monobutyl ether; diethylene glycol monomethyl ether; diethyl glycol monoethyl ether, dipropylene glycol; dipropylene glycol monomethyl ether ethylene glycol monomethyl ether; ethylene glycol monoethyl ether; ethylene glycol monobutyl ether; hexylene glycol; mannitol, sorbitol; pentaerythritol; dipentaerythritol, tripentaerythritol; trimethylolpropane; trimethylolethane; neopentyl glycol; diethanolamine; triethanolamine; diisopropanolamine; triisopropanolamine; 1,4-dimethylolcyclohexane; 2,2-bis(hydroxymethyl)propionic acid; 1,2-bis(hydroxymethyl)benzene; 4,5-bis(hydroxymethyl)furfural; 4,8-bis(hydroxymethyl)tricyclo-[5,2,1,0]decane; tartaric acid; 2-ethyl-1,3-hexanediol; 2-amino-2-ethyl-1,3-propanediol; triethylene glycol; tetraethylene glycol; glycerol; ascorbic acid. Representative but non-exhaustive examples of various aldehydes and ketones which can be alkoxylated according to the present invention are lauryl aldehyde benzaldehyde; 2-undecanoneacetophenone; 2,4-pentandione; acetylsalicyclic acid; ortho-chlorobenzaldehyde; para-chlorobenzaldehyde; cinnamic aldehyde; diisobutyl ketone; ethylacetoacetate; ethyl amyl ketone; camphor; para-hydroxybenzaldehyde; 2-carboxybenzaldehyde; 4-carboxybenzaldehyde; salicylaldehyde; octyl aldehyde; decyl aldehyde; p-methoxybenzaldehyde; p-aminobenzaldehyde; phenylacetaldehyde; acetoacetic acid; 2,5-dimethoxybenzaldehyde; T-naphthyl aldehyde; terephthaldehyde;
(b) aldehydes and ketones having from about 2 to about 30 carbon atoms and having the general formula
 wherein R
1
and R
2
independently are selected from the group consisting of hydrogen, linear and branched acyclic groups, alicyclic groups, cyclic groups, and aryl groups, and may contain one or more functionalities selected from the group consisting of carboxyl groups, hydroxyl groups, halogen atoms, nitro-groups, amine groups, and amide groups;
(c) primary, secondary and tertiary amides having from about 1 to about 30 carbon atoms and having the general formula
 wherein R
1
, R
2
, and R
3
independently are selected from the group consisting of hydrogen, linear and branched acyclic groups, alicyclic groups, cyclic groups, and aryl groups, and may contain one or more functionalities selected from the group consisting of hydroxyl groups, carboxyl groups, carbonyl groups, amine groups, nitro-groups, and halogen atoms. Representative but non-exhaustive examples of amides which can be alkoxylated according to the instant invention are: formamide; benzamide; acetanilide, salicylamide; acetoacetanilide; ortho-acetoacetotoluidide; acrylamide; N,N-diethyltoluamide; N,N-dimethylacetamide; N,N-dimethylformamide; phthalimide; octylamide; decylamide; laurylamide; stearylamide; N,N-dimethylollaurylamide; N,N-dimethylacrylamide; para-chlorobenzamide; para-methoxybenzamide; para-aminobenzamide; para-hydroxybenzamide; ortho-nitrobenzamide,; N-acetyl-para-aminophenol; 2-chloroacetamide; oxamide; N,N-methylene-bis-acrylamide;
(d) primary, secondary, and tertiary amines having from about 1 to about 30 carbon atoms, and having the general formula
 wherein R
1
, R
2
, and R
3
independently are selected from the group consisting of hydrogen, linear and branched acyclic groups, alicyclic groups, cyclic groups, and aryl groups, and may contain one or more functionalities selected from the group consisting of hydroxyl groups, carbonyl groups, halogen atoms, carboxyl groups, nitro-groups, and amide groups. Representative but non-exhaustive examples of amines which can be alkoxylated according to the present invention are: aniline; benzylamine; hexadecylamine, triphenylamine. aminoacetic acid anthranilic acid, cyclohexylamine, tert-octylamine; ortho-phenylenediamine; meta-phenylenediamine; para-phenylenediamine; N-acetyl-para-aminophenol; 2-amino-4-chlorophenol; 2-amino-2-ethyl-1,3-propanediol; ortho-aminophenol; para-aminophenol; para-aminosalicyclic acid, benzyl-N,N-dimethylamine; tert-butylamine; 2-chloro-4-aminotoluene; 6-chloro-2-aminotoluene; meta-chloroaniline; ortho-chloroaniline; para-chloroaniline; 4-chloro-2-nitroaniline; cyclohexylamine, dibutylamine; 2,5-dichloroaniline; 3,4-dichloroaniline; dicyclohexylamine; diethanolamine; N,N-diethylethanolamine; N,N-diethyl-meta-toluidine; N,N-diethylaniline; diethylenetriamine; diisopropanolamine; N,N-di

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of reducing flock during alkoxylation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of reducing flock during alkoxylation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of reducing flock during alkoxylation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2898520

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.