Method of providing a thermally-processed commodity within a...

Package making – Methods – With contents treating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C053S140000, C053S452000, C053S471000, C053S490000

Reexamination Certificate

active

06568156

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention generally relates to methods for providing a thermally-processed commodity. More specifically, this invention relates to a method for providing a thermally-processed commodity retained within a plastic container having a finish section properly engaged with a closure.
BACKGROUND
Recently, manufacturers of polyethylene terephthalate (PET) containers have begun to supply plastic containers for commodities that were previously packaged in glass containers. The manufacturers, as well as consumers, have recognized that PET containers are lightweight, inexpensive, recyclable, and manufacturable in large quantities. Manufacturers currently supply PET containers for various liquid commodities, such as juices. They also desire to supply PET containers for solid commodities, such as pickles. Many solid commodities, however, require pasteurization or retort, which presents an enormous challenge for manufactures of PET containers.
Pasteurization and retort are both methods for sterilizing the contents of a container after it has been filled and capped with a closure. Both processes include the heating of the contents of the container to a specified temperature, usually above 70° C., for a duration of a specified length. In low temperature pasteurization, the bottle is generally exposed to temperatures up to 75° C. In high temperature pasteurization, the bottle is generally exposed to temperatures greater than 75° C. Retort differs from pasteurization in that retort applies external pressure to the container. This overpressure is necessary because a hot water bath is often used and the overpressure keeps the water in liquid form above its atmospheric boiling point temperature. During the pasteurization or retort process, the finish section of a typical PET container shrinks considerably. This shrinkage of the finish section prevents proper engagement of the finish section with the closure, which may lead to leakage or spoilage of the commodity within the PET container. It has been found that the finish section can be stabilized by inducing spherulitic crystallization into the finish.
PET is a crystallizable polymer, meaning that it is available in an amorphous form or a semi-crystalline form. The ability of a PET container to resist shrinkage is related to the percentage of the PET container that is in crystalline form, also known as the “crystallinity” of the PET container. Crystallinity is characterized as a volume fraction by the equation:
Crystallinity
=
ρ
-
ρ
a
ρ
c
-
ρ
a
where &rgr; is the density of the PET material; &rgr;a is the density of pure amorphous PET material (1.333 g/cc); and &rgr;c is the density of pure crystalline material (1.455 g/cc). The crystallinity of a PET container can be increased by mechanical processing and by thermal processing.
Mechanical processing involves orienting the amorphous material to achieve strain hardening. This processing commonly involves stretching a PET container along a longitudinal axis and expanding the PET container along a transverse axis. The combination promotes biaxial orientation. Manufacturers of PET bottles currently use mechanical processing to produce PET bottles having roughly 20% crystallinity (average sidewall crystallinity).
Thermal processing involves heating the material (either amorphous or semi-crystalline) to promote crystal growth. Used on amorphous material, thermal processing of PET material results in a spherulitic morphology that interferes with the transmission of light. In other words, the resulting crystalline material is opaque (and generally undesirable on the sidewall of the container). Used after mechanical processing, however, thermal processing results in higher crystallinity and excellent clarity. The thermal processing of an oriented PET container, which is known as heat setting, typically includes blow molding a PET preform against a heated blow mold, at a temperature of 120-130° C., and holding the blown container against the mold for about three seconds. Manufacturers of PET juice bottles, which must be hot filled at about 85° C., currently use heat setting to produce PET juice bottles having a range of up to 25-30% crystallinity in their sidewalls and over 30% in their finish sections. Although these hot fill PET containers exhibit a significant improvement over non-hot fill PET containers, they cannot adequately prevent shrinkage of the finish section to properly engage the closure. Depending on the diameter of the finish section, and the temperature and duration of thermal processing, these crystallized finishes have been measured to exhibit shrinkages in the range of 0.4% to 0.8%. With shrinkages in this range, an induction seal is required in addition to the closure cap to ensure the integrity of the seal. This adds cost and complexity to the processing of the container.
Thus, the manufacturers of PET containers desire an efficient and inexpensive method of providing a PET container for a thermally-processed commodity product retained within a PET container having a finish section properly sized and engaged with a closure. It is therefore an object of this invention to provide such a method.
SUMMARY OF THE INVENTION
The present invention includes a method for providing a PET container, which after thermal processing the commodity product retained within the plastic container, has a finish section defining a finish diameter of a predetermined value so as to ensure proper sealing of the container. The invention also includes a method for providing a thermally-processed commodity that overcomes the problems and disadvantages of the conventional techniques in the art.
The present invention in a preferred embodiment is a method for providing a thermally-processed commodity including providing a plastic container having a finish section defining a finish diameter greater than the predetermined value. Then dispensing a commodity product within the plastic container, capping the container with a cap designed to engage a finish having a diameter of the predetermined value. Then, thermally processing the commodity product within the plastic container and shrinking the finish diameter during thermal processing from greater than the predetermined value to about the predetermined value. With a finish diameter at about the predetermined value, the finish section will properly engage the closure, seal the closure and avoid spoilage of the commodity product within the plastic container.
The present invention in an alternate preferred embodiment is a method for providing a thermally-processed commodity including providing a plastic container having a finish section defining a finish diameter that is within a predetermined range. Then dispensing a commodity product within the plastic container, capping the container with a cap designed to engage the finish section defining the finish diameter. Then thermally processing the commodity product within the plastic container, the finish section defining the finish diameter at the conclusion of thermal processing also being within the predetermined range. With the finish section within the predetermined range, the closure retains a hermetic seal to avoid spoilage of the commodity product via breach of the hermetic seal.
Further features and advantages of this invention will become apparent from the following discussion and accompanying drawings.


REFERENCES:
patent: 4015401 (1977-04-01), St. Amand et al.
patent: 4039641 (1977-08-01), Collins
patent: 4091059 (1978-05-01), Ryder
patent: 4151250 (1979-04-01), Barry et al.
patent: 4154920 (1979-05-01), Jabarin
patent: 4244913 (1981-01-01), Ryder
patent: 4264558 (1981-04-01), Jacobsen
patent: 4375442 (1983-03-01), Ota et al.
patent: 4379099 (1983-04-01), Ota et al.
patent: 4385089 (1983-05-01), Bonnebat et al.
patent: 4476170 (1984-10-01), Jabarin
patent: 4512948 (1985-04-01), Jabarin
patent: 4522779 (1985-06-01), Jabarin
patent: 4572811 (1986-02-01), Ota et al.
patent: 4590021 (1986-05-01), Ota et al.
patent: 4618515 (1986-10-01), Collette et al.
patent: 4667

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of providing a thermally-processed commodity within a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of providing a thermally-processed commodity within a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of providing a thermally-processed commodity within a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3022015

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.