Coating processes – With post-treatment of coating or coating material – Heating or drying
Reexamination Certificate
2000-03-02
2002-04-09
Beck, Shrive P. (Department: 1762)
Coating processes
With post-treatment of coating or coating material
Heating or drying
C427S421100, C427S230000, C427S236000, C427S393000, C427S393600
Reexamination Certificate
active
06368670
ABSTRACT:
Building codes for commercial buildings generally require fire barriers that prevent the combustion products of fire, e.g., heat, smoke and gases, from passing through building joints into adjoining areas. Joints in buildings, e.g., joints between walls, floors, walls and floors, perimeter joints and joints at the head of a wall (i.e., between a wall and a ceiling), include two structures that meet to define an opening. The opening can potentially provide a source of oxygen for a fire. Therefore, joint openings are usually filled with a fire retardant material, e.g., insulation or mineral wool, to provide a “fire dam,” and then sealed, e.g., with a caulk, putty or a sprayable coating, to provide a fire barrier.
The sealant applied to the joint is often flexible to accommodate joint movement due to building movement that may occur due to various forces including, e.g., loads, heat, wind and seismic factors. Such joints are often referred to as “dynamic joints.” Dynamic joints are generally linear openings in a building designed to allow for building movement. Examples of dynamic joints include joints within floors or walls, and joints between floors and walls. Dynamic joints are often referred to in the trade as “construction joints,” “soft joints,” “expansion joints,” and “seismic joints.” A fire barrier for a dynamic joint generally needs to retain its resiliency over an extended period of time under dynamic conditions. During a fire condition, the joint is likely to be subject to even greater movement, thereby making it necessary that the fire barrier retain its integrity and prevent the migration of flame and smoke under such conditions.
SUMMARY
In one aspect, the invention features a method of providing a fire barrier, where the method includes coating an opening in a structure with a composition that includes an elastomer, the composition being substantially free of volatile organic compounds and, when dry, exhibiting a tensile strength of from about 300 psi to about 1500 psi, at least about 600% elongation, a modulus of from about 200 psi to about 600 psi, and a tensile toughness of greater than 10 in-lb. In one embodiment, the method further includes spraying the composition on the structure and across the opening. In another embodiment, the method further includes propelling the composition from an aerosol container onto the structure and across the opening.
In other embodiments, the structure includes a joint that includes a first substrate and a second substrate, the opening being disposed between the first substrate and the second substrate. In some embodiments, the structure further includes a fire retardant component disposed within the opening.
In other embodiments, the method provides a fire barrier capable of passing at least one of Fire Test No. 1, Fire Test No. 2, and Fire Test No. 3. In some embodiments, the composition is capable of passing at least one test selected from the group consisting of Fire Test No. 1, Fire Test No. 2 and Fire Test No. 3, when installed in the fire rated construction of the test.
In another aspect, the invention features a method of providing a fire barrier that includes coating an opening in a structure with a composition that includes a carboxylated elastomer, the composition being water reducible and, when dry, exhibiting a toughness of at least about 20 in-lb. In one embodiment the composition, when dry, exhibits at least about 600% elongation. In other embodiments, the composition, when dry, exhibits from at least about 700% elongation. In some embodiments, the composition, when dry, exhibits a tensile strength of from about 300 psi to about 1500 psi. In another embodiment, the composition, when dry, exhibits a toughness of at least about 30 in-lb. In one embodiment, the elastomer is selected from the group consisting of polychloroprene, styrene butadiene rubber and mixtures thereof. In some embodiments, the composition is substantially free of volatile organic compounds.
In other aspects, the invention features a method of providing a fire barrier that includes coating an opening in a structure with a composition that includes a carboxylated elastomer, the composition being water reducible and, when dry, exhibiting a modulus of from about 200 psi to about 600 psi and a toughness of greater than 10 in-lb. In one embodiment, the composition exhibits a modulus of from about 200 psi to about 300 psi. In other embodiments, the composition, when dry, exhibits a toughness of at least about 30 in-lb.
In another aspect, the invention features a method of providing a fire barrier that includes coating an opening in a structure with a composition that includes a carboxylated elastomer, the composition being water reducible and, when dry, exhibiting a tensile strength of from about 300 psi to about 1500 psi and a toughness of greater than 10 in-lb. In one embodiment, the composition exhibits a modulus of from about 200 psi to about 600 psi. In other embodiments, the composition, when dry, exhibits a toughness of at least about 30 in-lb.
In other aspects, the invention features a device capable of spraying a composition, the device includes a chamber and an above-described composition.
In another aspect, the invention features an aerosol container according to an above-described device, wherein the container further includes a propellant, e.g., a fluorocarbon.
The composition is well suited for sealing joints in buildings. The composition, after drying, provides a good barrier to combustion products such as smoke, heat and gases. The dried composition also exhibits good resistance to a fire hose stream of water. The dried composition is also sufficiently flexible so as to maintain a seal around a joint that experiences movement, i.e., a dynamic joint. The composition is also water reducible, i.e., dispersible in water without visible coagulation or stringing, and can be washed away with tap water, which affords easy cleanup to the user. In addition, the composition can be formulated to be sprayable, e.g., from a pressurized aerosol container, an air sprayer, an airless sprayer, a hand pressurized sprayer such as a “Hudson” type garden sprayer (H.D. Hudson Mfg. Co., Hastings, Minn.) or a trigger sprayer, which facilitates ease of use and application.
Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.
DETAILED DESCRIPTION
The method of providing a fire barrier includes sealing an opening, e.g., a joint in a structure. The opening can be sealed by 1) coating a composition on the substrate(s) that defines the joint opening, as well as material within the opening, e.g., a fire retardant material (e.g., insulation or mineral wool), and 2) drying the composition to provide a seal that inhibits (more preferably prevents) the combustion products of fire from passing through the seal and the joint. The composition can be applied to all sides of the joint. The composition can be applied using a variety of techniques including, e.g., painting and spraying as described below.
The composition dries to form a film that, when tested at room temperature and after aging for 3 hours at 100° C., exhibits a tensile strength of from about 2.067 MPa (300 psi) to about 10.335 MPa (1500 psi) (more preferably from about 2.067 MPa (300 psi) to about 4.134 MPa (600 psi)), greater than about 600% elongation (preferably at least about 700% elongation, most preferably at least about 1000% elongation), a modulus of from about 1.378 MPa (200 psi) to about 4.134 MPa (600 psi) (more preferably from about 1.378 MPa (200 psi) to about 2.067 MPa (300 psi)), and a tensile toughness of greater than 1.13 Joules (10 in-lb) (preferably greater than about 2.26 Joules (20 in-lb), more preferably greater than about 3.39 Joules (30 in-lb), most preferably greater than about 4.52 Joules (40 in-lb)).
Upon drying, the composition also exhibits good adhesion to building substrates including, e.g., gypsum wallboard (i.e., sheetrock), concrete mortar, steel, fire retardant substrates, e.
Cordts Brandon L.
Frost George W.
Su Biing-Huei
Vesley George F.
3M Innovative Properties Company
Beck Shrive P.
Calcagni Jennifer
Patchett David B.
LandOfFree
Method of providing a fire barrier and article therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of providing a fire barrier and article therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of providing a fire barrier and article therefor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2827808