Optical: systems and elements – Single channel simultaneously to or from plural channels – By surface composed of lenticular elements
Reexamination Certificate
2001-02-22
2002-12-03
Mack, Ricky (Department: 2873)
Optical: systems and elements
Single channel simultaneously to or from plural channels
By surface composed of lenticular elements
C359S620000, C359S628000
Reexamination Certificate
active
06490093
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to the manufacture of plastic containers and objects, and more particularly, to a method of fabricating plastic objects having a lenticular lens sheet or insert. The fabrication method includes a process of bonding lenticular lens material to the constituent plastic of the container of object during molding processes without damaging the lenticular lens material.
BACKGROUND OF THE INVENTION
It is a growing practice to utilize conventional plastic molded cups and containers to display promotional messages and to increase the market value of the cups and containers by adding images of sports figures, movie and television personalities and other graphics. While the printing processes for producing these messages, images and graphics have improved in recent years with advances in printing technologies, the messages, characters, and other graphics have generally remained two dimensional, static and non-moveable. The expectations of purchasers of these containers continues to rise, and the general public continues to demand ever increasing and enhanced visual effects in all media. Specifically, the entertainment industry routinely licenses its proprietary images for use on cups, packaging, and containers of all types from plastic soda cups to popcorn containers and their lids. The entertainment industry uses bright colors and molded shapes extensively to excite and interest customers and collectors of these containers. There continues to be pressure from movie makers, sports promoters and others in the entertainment industry to develop new products to better capture the public's attention for their promotions and licensed products.
In addition to problems with creating more exciting imagery, there are design restraints faced by plastic cup and container manufacturers that must be addressed in creating any new product. For example, in the traditional plastic cup industry, the manufacturers are continuously struggling with the demands for a less expensive cup to make their use attractive as part of no-cost promotional campaigns (e.g., the cup is given away by a retailer with the purchase of soda, beer, or other beverage) and as a profitable standalone product. One method used to reduce cost is to reduce the amount or weight of plastic used in each cup by thinning the cup wall and other methods. Reducing the weight of plastic used reduces material costs and also makes the manufacturing (i.e., molding) of the cups faster and less expensive as the molds can be filled more rapidly and the plastic cools in a shorter time. However, the desire for less material weight and wall thickness must be balanced with the hoop strength of a cup to control the cup being squeezed shut or deformed. Hoop strength is typically measured by adding weights or pressure to a point near the top of the cup on the outer surface of the side wall and measuring the amount of deflection of the open end of the cup.
To further minimize the costs of containers, the inner and outer surfaces of the walls are typically kept smooth and their shape kept relatively simple to minimize mold costs. These smooth surfaces also have been required because the typical method of placing images and graphics on containers and other plastic objects is with standard printing processes, such as offset printing, that are most effective on smooth printing surfaces.
The inventors recognize the needs of the entertainment industry and understand the benefits of providing more visually appealing images and graphics as part of promotional containers and other plastic products. These plastic products are significantly improved by including a three dimensional (“3D”), action image provided with the use of Lenticular lens materials or sheets (i.e., interlaced segments of images combined with Lenticular lenses to provide a variety of visual effects such as motion, zooming in and out, and 3D effects).
The use of Lenticular lens material is known in the printing industry for creating promotional material and typically involves producing a sheet of Lenticular lens material and adhesively attaching the Lenticular lens material to a separately produced object for display. The production of Lenticular lenses is well-known and described in detail in a number of U.S. patents, including U.S. Pat. No. 5,967,032 to Bravenec et al. In general, the production process includes selecting segments from visual images to create a desired visual effect and interlacing the segments (i.e., planning the layout of the numerous images). Lenticular lenses are then mapped to the interlaced or planned segments, and the Lenticular lenses are fabricated according to this mapping. The Lenticular lenses generally include a transparent web which has a flat side or layer and a side with optical ridges and grooves formed by Lenticules (i.e., convex lenses) arranged side-by-side with the Lenticules or optical ridges extending parallel to each other the length of the transparent web. To provide the unique visual effects, ink (e.g., four color ink) is applied to or printed directly on the flat side of the transparent web to form a thin ink layer, which is then viewable through the transparent web of optical ridges.
While these Lenticular lens materials provide excellent visual effects, the use of adhesives and other attachment methods has not proven effective in producing high quality, long-lasting, and inexpensive plastic products. Because attaching the Lenticular lens material after producing the plastic cup or container is inefficient and relatively expensive, the plastic manufacturing industry desires a method for attaching the Lenticular lens material to plastic cups or containers as part of the cup or container manufacturing process. Unfortunately, the plastic manufacturing industry has not been able to overcome the problems associated with using common Lenticular lens material as part of standard plastic fabrication processes. The problems arise because plastic fabrication generally includes processes such as injection molding that involve heating raw plastic materials to a relatively high temperature (e.g., 400 to 500° F. or hotter) and then injecting the fluid plastic into a mold with the shape of the desired plastic object or by otherwise processing the molten plastic. The ink or ink layer has a chemistry that does not stay intact when the ink is heated to these high temperatures, and the image is destroyed or at least significantly altered.
To address this problem, the plastic manufacturing industry has made some attempts at protecting the ink layer from the high temperature molten plastics during injection molding processes. Typically, these attempts have involved applying a bonding and protective substrate of hot melt polyethylene to the ink or ink layer to provide protection from the molten plastics and to provide a bonding interface between the Lenticular lens and the plastic of the formed cup or container. The protective substrate material may be as thick as 2.5 mils or more to provide adequate thermal insulation for the ink layer.
While providing a generally effective bonding surface and providing some protection for the ink layer, the application and use of a protective substrate has not resolved all manufacturing problems facing the plastic manufacturing industry. For example, it has proven difficult and often expensive to apply the substrate to the ink layer at a thickness that adequately thermally protects the ink from the high temperature molten plastic during injection molding. Another ongoing challenge has been obtaining adequate opacity behind the lens and ink layer as needed to provide a sharp and colorful image. Typically, proper opacity has been achieved with the use of additional volumes (i.e., thicknesses) of material in the protective substrate which increases costs and adds to manufacturing difficulties of applying thick protective coats on the ink layer.
Another ongoing problem is the thermal protection of the Lenticular lens during the injection molding process. Although the Lenticular
Digital Replay, Inc.
Hogan & Hartson L.L.P.
Lembke Kent A.
Mack Ricky
LandOfFree
Method of protecting ink and providing enhanced bonding... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of protecting ink and providing enhanced bonding..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of protecting ink and providing enhanced bonding... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2973501